Vazquez-Rivera D, Gonzalez O, Guzman-Rodriguez J, Diaz-Perez AL, Ochoa-Zarzosa A, Lopez-Bucio J, Meza-Carmen V, Campos-Garcia J. Cytotoxicity of cyclodipeptides from Pseudomonas aeruginosa PAO1 leads to apoptosis in human cancer cell lines. Biomed Res Int. 2015;2015:197608.
Article
PubMed
PubMed Central
Google Scholar
Fukushima K, Yazawa K, Arai T. Biological activities of albonoursin. J Antibiot (Tokyo). 1973;26(3):175–6.
Article
CAS
Google Scholar
Macwilliam IC. A survey of the antibiotic powers of yeasts. J Gen Microbiol. 1959;21:410–4.
Article
CAS
PubMed
Google Scholar
Oro L, Ciani M, Comitini F. Antimicrobial activity of Metschnikowia pulcherrima on wine yeasts. J Appl Microbiol. 2014;116(5):1209–17.
Article
CAS
PubMed
Google Scholar
Belin P, Le Du MH, Fielding A, Lequin O, Jacquet M, Charbonnier JB, Lecoq A, Thai R, Courcon M, Masson C, et al. Identification and structural basis of the reaction catalyzed by CYP121, an essential cytochrome P450 in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2009;106(18):7426–31.
Article
PubMed
PubMed Central
Google Scholar
McLean KJ, Carroll P, Lewis DG, Dunford AJ, Seward HE, Neeli R, Cheesman MR, Marsollier L, Douglas P, Smith WE, et al. Characterization of active site structure in CYP121. A cytochrome P450 essential for viability of Mycobacterium tuberculosis H37Rv. J Biol Chem. 2008;283(48):33406–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Canale-Parola E. A red pigment produced by aerobic sporeforming bacteria. Arch Mikrobiol. 1963;46:414–27.
Article
CAS
Google Scholar
Kluyver AJ, van der Walt JP, van Triet AJ. Pulcherrimin, the pigment of Candida pulcherrima. Proc Natl Acad Sci U S A. 1953;39(7):583–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
MacDonald JC. Biosynthesis of pulcherriminic acid. Biochem J. 1965;96:533–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Uffen RL, Canale-Parola E. Synthesis of pulcherriminic acid by Bacillus subtilis. J Bacteriol. 1972;111(1):86–93.
CAS
PubMed
PubMed Central
Google Scholar
Sipiczki M. Metschnikowia strains isolated from botrytized grapes antagonize fungal and bacterial growth by iron depletion. Appl Environ Microbiol. 2006;72(10):6716–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Turkel S, Ener B. Isolation and characterization of new Metschnikowia pulcherrima strains as producers of the antimicrobial pigment pulcherrimin. Z Naturforsch C. 2009;64(5–6):405–10.
CAS
PubMed
Google Scholar
Turkel S, Korukluoglu M, Yavuz M. Biocontrol activity of the local strain of Metschnikowia pulcherrima on different postharvest pathogens. Biotechnol Res Int. 2014;2014:397167.
Article
PubMed
PubMed Central
Google Scholar
Gondry M, Sauguet L, Belin P, Thai R, Amouroux R, Tellier C, Tuphile K, Jacquet M, Braud S, Courcon M, et al. Cyclodipeptide synthases are a family of tRNA-dependent peptide bond-forming enzymes. Nat Chem Biol. 2009;5(6):414–20.
Article
CAS
PubMed
Google Scholar
Sauguet L, Moutiez M, Li Y, Belin P, Seguin J, Le Du MH, Thai R, Masson C, Fonvielle M, Pernodet JL, et al. Cyclodipeptide synthases, a family of class-I aminoacyl-tRNA synthetase-like enzymes involved in non-ribosomal peptide synthesis. Nucleic Acids Res. 2011;39(10):4475–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cryle MJ, Bell SG, Schlichting I. Structural and biochemical characterization of the cytochrome P450 CypX (CYP134A1) from Bacillus subtilis: a cyclo-L-leucyl-L-leucyl dipeptide oxidase. Biochemistry. 2010;49(34):7282–96.
Article
CAS
PubMed
Google Scholar
Alekshun MN, Levy SB. The mar regulon: multiple resistance to antibiotics and other toxic chemicals. Trends Microbiol. 1999;7(10):410–3.
Article
CAS
PubMed
Google Scholar
Egland PG, Harwood CS. BadR, a new MarR family member, regulates anaerobic benzoate degradation by Rhodopseudomonas palustris in concert with AadR, an Fnr family member. J Bacteriol. 1999;181(7):2102–9.
CAS
PubMed
PubMed Central
Google Scholar
Fuangthong M, Atichartpongkul S, Mongkolsuk S, Helmann JD. OhrR is a repressor of ohrA, a key organic hydroperoxide resistance determinant in Bacillus subtilis. J Bacteriol. 2001;183(14):4134–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Otani H, Stogios PJ, Xu X, Nocek B, Li SN, Savchenko A, Eltis LD. The activity of CouR, a MarR family transcriptional regulator, is modulated through a novel molecular mechanism. Nucleic Acids Res. 2016;44(2):595-607.
Seoane AS, Levy SB. Characterization of MarR, the repressor of the multiple antibiotic resistance (mar) operon in Escherichia coli. J Bacteriol. 1995;177(12):3414–9.
CAS
PubMed
PubMed Central
Google Scholar
Wilkinson SP, Grove A. HucR, a novel uric acid-responsive member of the MarR family of transcriptional regulators from Deinococcus radiodurans. J Biol Chem. 2004;279(49):51442–50.
Article
CAS
PubMed
Google Scholar
Ellison DW, Miller VL. Regulation of virulence by members of the MarR/SlyA family. Curr Opin Microbiol. 2006;9(2):153–9.
Article
CAS
PubMed
Google Scholar
Lim D, Poole K, Strynadka NC. Crystal structure of the MexR repressor of the mexRAB-oprM multidrug efflux operon of Pseudomonas aeruginosa. J Biol Chem. 2002;277(32):29253–9.
Article
CAS
PubMed
Google Scholar
Luong TT, Newell SW, Lee CY. Mgr, a novel global regulator in Staphylococcus aureus. J Bacteriol. 2003;185(13):3703–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wei K, Tang DJ, He YQ, Feng JX, Jiang BL, Lu GT, Chen B, Tang JL. hpaR, a putative marR family transcriptional regulator, is positively controlled by HrpG and HrpX and involved in the pathogenesis, hypersensitive response, and extracellular protease production of Xanthomonas campestris pathovar campestris. J Bacteriol. 2007;189(5):2055–62.
Article
CAS
PubMed
Google Scholar
Di Fiore A, Fiorentino G, Vitale RM, Ronca R, Amodeo P, Pedone C, Bartolucci S, De Simone G. Structural analysis of BldR from Sulfolobus solfataricus provides insights into the molecular basis of transcriptional activation in Archaea by MarR family proteins. J Mol Biol. 2009;388(3):559–69.
Article
PubMed
Google Scholar
Ludwig M, Pandelia ME, Chew CY, Zhang B, Golbeck JH, Krebs C, Bryant DA. ChlR protein of Synechococcus sp. PCC 7002 is a transcription activator that uses an oxygen-sensitive [4Fe-4S] cluster to control genes involved in pigment biosynthesis. J Biol Chem. 2014;289(24):16624–39.
Article
CAS
PubMed Central
Google Scholar
Oh SY, Shin JH, Roe JH. Dual role of OhrR as a repressor and an activator in response to organic hydroperoxides in Streptomyces coelicolor. J Bacteriol. 2007;189(17):6284–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grove A. MarR family transcription factors. Curr Biol. 2013;23(4):R142–3.
Article
CAS
PubMed
Google Scholar
Perera IC, Grove A. Molecular mechanisms of ligand-mediated attenuation of DNA binding by MarR family transcriptional regulators. J Mol Cell Biol. 2010;2(5):243–54.
Article
CAS
PubMed
Google Scholar
Wilkinson SP, Grove A. Ligand-responsive transcriptional regulation by members of the MarR family of winged helix proteins. Curr Issues Mol Biol. 2006;8(1):51–62.
PubMed
Google Scholar
Nicolas P, Mader U, Dervyn E, Rochat T, Leduc A, Pigeonneau N, Bidnenko E, Marchadier E, Hoebeke M, Aymerich S, et al. Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. Science. 2012;335(6072):1103–6.
Article
CAS
PubMed
Google Scholar
Blencke HM, Homuth G, Ludwig H, Mader U, Hecker M, Stülke J. Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis: regulation of the central metabolic pathways. Metab Eng. 2003;5(2):133–49.
Article
CAS
PubMed
Google Scholar
Smaldone GT, Antelmann H, Gaballa A, Helmann JD. The FsrA sRNA and FbpB protein mediate the iron-dependent induction of the bacillus subtilis LutABC iron-sulfur-containing oxidases. J Bacteriol. 2012;194(10):2586–93. Epub 2012 Mar 2516.
Article
CAS
PubMed Central
Google Scholar
Yu WB, Ye BC. Transcriptional profiling analysis of Bacillus subtilis in response to high levels of Fe. Curr Microbiol. 2016.
Alen C, Sonenshein AL. Bacillus subtilis aconitase is an RNA-binding protein. Proc Natl Acad Sci U S A. 1999;96(18):10412–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gaballa A, Antelmann H, Aguilar C, Khakh SK, Song KB, Smaldone GT, Helmann JD. The Bacillus subtilis iron-sparing response is mediated by a Fur-regulated small RNA and three small, basic proteins. Proc Natl Acad Sci U S A. 2008;105(33):11927–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pechter KB, Meyer FM, Serio AW, Stulke J, Sonenshein AL. Two roles for aconitase in the regulation of tricarboxylic acid branch gene expression in Bacillus subtilis. J Bacteriol. 2013;195(7):1525–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miethke M, Westers H, Blom EJ, Kuipers OP, Marahiel MA. Iron starvation triggers the stringent response and induces amino acid biosynthesis for bacillibactin production in Bacillus subtilis. J Bacteriol. 2006;188(24):8655–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baichoo N, Wang T, Ye R, Helmann JD. Global analysis of the Bacillus subtilis Fur regulon and the iron starvation stimulon. Mol Microbiol. 2002;45(6):1613–29.
Article
CAS
PubMed
Google Scholar
Herbig AF, Helmann JD. Roles of metal ions and hydrogen peroxide in modulating the interaction of the Bacillus subtilis PerR peroxide regulon repressor with operator DNA. Mol Microbiol. 2001;41(4):849–59.
Article
CAS
PubMed
Google Scholar
Chamnongpol S, Dodson W, Cromie MJ, Harris ZL, Groisman EA. Fe(III)-mediated cellular toxicity. Mol Microbiol. 2002;45(3):711–9.
Article
CAS
PubMed
Google Scholar
Suwalsky M, Martinez F, Cardenas H, Grzyb J, Strzalka K. Iron affects the structure of cell membrane molecular models. Chem Phys Lipids. 2005;134(1):69–77.
Article
CAS
PubMed
Google Scholar
Wosten MM, Kox LF, Chamnongpol S, Soncini FC, Groisman EA. A signal transduction system that responds to extracellular iron. Cell. 2000;103(1):113–25.
Article
CAS
PubMed
Google Scholar
Bailey TL, Williams N, Misleh C, Li WW. MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res. 2006;34(Web Server issue):W369–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Perego M. A new family of aspartyl phosphate phosphatases targeting the sporulation transcription factor Spo0A of Bacillus subtilis. Mol Microbiol. 2001;42(1):133–43.
Article
CAS
PubMed
Google Scholar
Kupfer DG, Uffen RL, Canale-Parola E. The role of iron and molecular oxygen in pulcherrimin synthesis by bacteria. Arch Mikrobiol. 1967;56(1):9–21.
Article
CAS
PubMed
Google Scholar
Cook AH, Slater CA. The structure of pulcherrimin. J Chem Soc. 1956;1956:4133–5.
Article
Google Scholar
Saravanakumar D, Spadaro D, Garibaldi A, Gullino ML. Detection of enzymatic activity and partial sequence of a chitinase gene in Metschnikowia pulcherrima strain MACH1 used as post-harvest biocontrol agent. Eur J Plant Pathol. 2009;123(2):183–93.
Article
CAS
Google Scholar
Sambrook J, Fristch EF, Maniatis T, editors. Molecular cloning: a laboratory manual. 2nd ed. Cold Spring Harbor: Cold Spring Harbor Laboratory; 1989.
Google Scholar
Kunst F, Rapoport G. Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis. J Bacteriol. 1995;177(9):2403–7.
CAS
PubMed
PubMed Central
Google Scholar
Stülke J, Martin-Verstraete I, Zagorec M, Rose M, Klier A, Rapoport G. Induction of the Bacillus subtilis ptsGHI operon by glucose is controlled by a novel antiterminator, GlcT. Mol Microbiol. 1997;25(1):65–78.
Article
PubMed
Google Scholar
Miller JH, editor. Assay of B-galactosidase. Cold Spring Harbor: Cold Spring Harbor Laboratory; 1972.
Google Scholar
Wach A. PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae. Yeast. 1996;12(3):259–65.
Article
CAS
PubMed
Google Scholar
Gibson DG, Young L, Chuang RY, Venter JC, Hutchison 3rd CA, Smith HO. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods. 2009;6(5):343–5.
Article
CAS
PubMed
Google Scholar
Mirouze N, Prepiak P, Dubnau D. Fluctuations in spo0A transcription control rare developmental transitions in Bacillus subtilis. PLoS Genet. 2011;7(4):e1002048.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alekshun MN, Levy SB, Mealy TR, Seaton BA, Head JF. The crystal structure of MarR, a regulator of multiple antibiotic resistance, at 2.3 A resolution. Nat Struct Biol. 2001;8(8):710-4.