Kutschera U. Plant-associated methylobacteria as co-evolved phytosymbionts: a hypothesis. Plant Signal Behav. 2007;2(2):74–8.
Article
PubMed
PubMed Central
Google Scholar
Araújo WL, Marcon J, Maccheroni W Jr, Van Elsas JD, Van Vuurde JW, Azevedo JL. Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl Environ Microbiol. 2002;68(10):4906–14.
Article
PubMed
PubMed Central
Google Scholar
Kuklinsky-Sobral J, Araújo WL, Mendes R, Geraldi IO, Pizzirani-Kleiner AA, Azevedo JL. Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol. 2004;6(12):1244–51.
Article
CAS
PubMed
Google Scholar
Hardoim PR, Van Overbeek LS, Van Elsas JD. Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol. 2008;16:463–71.
Article
CAS
PubMed
Google Scholar
Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN. Bacterial endophytes: recent developments and applications. FEMS Microbiol Let. 2008;278(1):1–9.
Article
CAS
Google Scholar
Dourado MN, Camargo Neves AA, Santos DS, Araújo WL. Biotechnological and agronomic potential of endophytic pink-pigmented methylotrophic Methylobacterium spp. Biomed Res Int. 2015;2015:909016.
White JF, Kingsley KL, Zhang Q, Verma R, Obi N, Dvinskikh S, Elmore MT, Verma SK, Gond SK, Kowalski KP. Endophytic microbes and their potential applications in crop management. Pest Manag Sci. 2019;75(10):2558–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Omer ZS, Tombolini R, Gerhardson B. Plant colonization by pink-pigmented facultative methylotrophic bacteria (PPFMs). FEMS Microbiol Ecol. 2004;47(3):319–26.
Article
CAS
PubMed
Google Scholar
Green PN. Methylobacterium. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K, Stackebrandt E, editors. The prokaryotes–a handbook on the biology of bacteria. Springer; 2006. p. 257–65.
Jacobs JL, Carroll TL, Sundin GW. The role of pigmentation, ultraviolet radiation tolerance, and leaf colonization strategies in the epiphytic survival of phyllosphere bacteria. Microb Ecol. 2005;49(1):104–13.
Article
CAS
PubMed
Google Scholar
Yoshida S, Hiradate S, Koitabashi M, Kamo T, Tsushima S. Phyllosphere Methylobacterium bacteria contain UVA-absorbing compounds. J Photochem Photobiol B: Biology. 2017;167:168–75.
Article
CAS
PubMed
Google Scholar
Kamo T, Hiradate S, Suzuki K, Fujita I, Yamaki S, Yoneda T, Koitabashi M, Yoshida S. Methylobamine, a UVA-absorbing compound from the plant-associated bacteria Methylobacterium sp. Nat Product Comm. 2018;13(2):1934578X1801300208.
CAS
Google Scholar
Corpe WA, Rheem S. Ecology of the methylotrophic bacteria on living leaf surfaces. FEMS Microbiol Ecol. 1989;5(4):243–9.
Article
Google Scholar
Yurimoto H, Shiraishi K, Sakai Y. Physiology of methylotrophs living in the phyllosphere. Microorganisms. 2021;9(4):809–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gholizadeh A. Molecular evidence for the contribution of methylobacteria to the pink-pigmentation process in pink-colored plants. J Plant Interact. 2012;7(4):316–21.
Article
CAS
Google Scholar
Patt TE, Cole GC, Hanson RS. Methylobacterium, a new genus of facultatively methylotrophic bacteria. Int J Syst Evol Microbiol. 1976;26(2):226–9.
CAS
Google Scholar
Sy A, Timmers AC, Knief C, Vorholt JA. Methylotrophic metabolism is advantageous for Methylobacterium extorquens during colonization of Medicago truncatula under competitive conditions. Appl Environ Microbiol. 2005;71(11):7245–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Šmejkalová H, Erb TJ, Fuchs G. Methanol assimilation in Methylobacterium extorquens AM1: demonstration of all enzymes and their regulation. PLoS One. 2010;5(10):e13001.
Article
PubMed
PubMed Central
Google Scholar
Hiraishi A, Furuhata K, Matsumoto A, Koike KA, Fukuyama M, Tabuchi K. Phenotypic and genetic diversity of chlorine-resistant Methylobacterium strains isolated from various environments. Appl Environ Microbiol. 1995;61(6):2099–107.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ito H, Iizuka H. Taxonomic studies on a radio-resistant Pseudomonas: part XII. Studies on the microorganisms of cereal grain. Agric Biol Chem. 1971;35(10):1566–71.
Google Scholar
van Aken B, Yoon JM, Schnoor JL. Biodegradation of nitro-substituted explosives 2, 4, 6-trinitrotoluene, hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine, and octahydro-1, 3, 5, 7-tetranitro-1, 3, 5-tetrazocine by a phytosymbiotic Methylobacterium sp. associated with poplar tissues (Populus deltoides× nigra DN34). Appl Environ Microbiol. 2004;70(1):508–17.
Article
PubMed
PubMed Central
Google Scholar
Ventorino V, Sannino F, Piccolo A, Cafaro V, Carotenuto R, Pepe O. Methylobacterium populi VP2: plant growth-promoting bacterium isolated from a highly polluted environment for polycyclic aromatic hydrocarbon (PAH) biodegradation. Sci World J. 2014. https://doi.org/10.1155/2014/931793.
Bijlani S, Singh NK, Eedara VV, Podile AR, Mason CE, Wang CC, Venkateswaran K. Methylobacterium ajmalii sp. nov., isolated from the International Space Station. Front Microbiol. 2021;12:534–48.
Holland MA. Occam’s razor applied to hormonology (Are cytokinins produced by plants?). Plant Physiol. 1997;115(3):865–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holland MA. Methylobacterium and plants. Rec Res Dev Plant Physiol. 1997;1:207–13.
Google Scholar
Sakakibara H. Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol. 2006;57:431–49.
Article
CAS
PubMed
Google Scholar
Kieber JJ, Schaller E. Cytokinin signaling in plant development. Development. 2018;145:dev149344.
Article
PubMed
Google Scholar
M Gibb AB Kisiala EN Morrison RN Emery 2020 The origins and roles of methylthiolated cytokinins: Evidence from among life kingdoms Front Cell Dev Biol doi.org/https://doi.org/10.3389/fcell.2020.605672
Koenig RL, Morris RO, Polacco JC. tRNA is the source of low-level trans-zeatin production in Methylobacterium spp. J Bacteriol. 2002;184(7):1832–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fall R, Benson AA. Leaf methanol—the simplest natural product from plants. Trends Plant Sci. 1996;1(9):296–301.
Article
Google Scholar
Abanda-Nkpwatt D, Müsch M, Tschiersch J, Boettner M, Schwab W. Molecular interaction between Methylobacterium extorquens and seedlings: growth promotion, methanol consumption, and localization of the methanol emission site. J Exp Bot. 2006;57(15):4025–32.
Article
CAS
PubMed
Google Scholar
Biswas JC, Kalra N, Maniruzzaman M, Haque MM, Naher UA, Ali MH, Kabir W, Rahnamayan S. Soil fertility levels in Bangladesh for rice cultivation. Asian J Soil Sci Plant Nutr. 2019;27:1–11.
Article
Google Scholar
Lee Y, Krishnamoorthy R, Selvakumar G, Kim K, Sa T. Alleviation of salt stress in maize plant by co-inoculation of arbuscular mycorrhizal fungi and Methylobacterium oryzae CBMB20. J Korean Soc Appl Biol Chem. 2015;58(4):533–40.
Article
CAS
Google Scholar
Jorge GL, Kisiala A, Morrison E, Aoki M, Nogueira AP, Emery RN. Endosymbiotic Methylobacterium oryzae mitigates the impact of limited water availability in lentil (Lens culinaris Medik.) by increasing plant cytokinin levels. Environ Exp Bot. 2019;162:525–40.
Article
CAS
Google Scholar
Esitken A, Yildiz HE, Ercisli S, Donmez MF, Turan M, Gunes A. Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically grown strawberry. Scientia Hortic. 2010;124(1):62–6.
Article
CAS
Google Scholar
Maneewan K, Khonsarn N. Selection of bioinoculants for tomato growth enhancement and pathogen resistance. Asia-Pacific J Sci Technol. 2017;22(3):1-9.
Aoki MM, Kisiala AB, Rahman T, Morrison EN, Emery RN. Cytokinins are pervasive among common in vitro culture media: An analysis of their forms, concentrations and potential sources. J Biotechnol. 2021;334:43–6.
Article
CAS
PubMed
Google Scholar
Madhaiyan M, Reddy BS, Anandham R, Senthilkumar M, Poonguzhali S, Sundaram SP, Sa T. Plant growth–promoting Methylobacterium induces defense responses in groundnut (Arachis hypogaea L.) compared with rot pathogens. Curr Microbiol. 2006;53(4):270–6.
Article
CAS
PubMed
Google Scholar
Meena KK, Kumar M, Kalyuzhnaya MG, Yandigeri MS, Singh DP, Saxena AK, Arora DK. Epiphytic pink-pigmented methylotrophic bacteria enhance germination and seedling growth of wheat (Triticum aestivum) by producing phytohormone. Antonie Van Leeuwenhoek. 2012;101(4):777–86.
Article
CAS
PubMed
Google Scholar
Elbeltagy A, Nishioka K, Suzuki H, Sato T, Sato YI, Morisaki H, Mitsui H, Minamisawa K. Isolation and characterization of endophytic bacteria from wild and traditionally cultivated rice varieties. Soil Sci Plant Nutr. 2000;46(3):617–29.
Article
Google Scholar
Madhaiyan M, Poonguzhali S, Lee HS, Hari K, Sundaram SP, Sa TM. Pink-pigmented facultative methylotrophic bacteria accelerate germination, growth and yield of sugarcane clone Co86032 (Saccharum officinarum L.). Biol Fertil Soils. 2005;41(5):350–8.
Article
CAS
Google Scholar
Holland MA, Polacco JC. PPFMs and other covert contaminants: is there more to plant physiology than just plant? Annu Rev Plant Biol. 1994;45(1):197–209.
Article
CAS
Google Scholar
Ivanova EG, Doronina NV, Shepelyakovskaya AO, Laman AG, Brovko FA, Trotsenko YA. Facultative and obligate aerobic methylobacteria synthesize cytokinins. Microbiology. 2000;69(6):646–51.
Article
CAS
Google Scholar
Phillips DA, Torrey JG. Studies on cytokinin production by Rhizobium. Plant Physiol. 1972;49(1):11–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sturtevant DB, Taller BJ. Cytokinin production by Bradyrhizobium japonicum. Plant Physiol. 1989;89(4):1247–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boiero L, Perrig D, Masciarelli O, Penna C, Cassán F, Luna V. Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Appl Microbiol Biotechnol. 2007;74(4):874–80.
Article
CAS
PubMed
Google Scholar
Kisiala A, Laffont C, Emery RN, Frugier F. Bioactive cytokinins are selectively secreted by Sinorhizobium meliloti nodulating and nonnodulating strains. MPMI. 2013;26(10):1225–31.
Article
CAS
PubMed
Google Scholar
Romanov GA. How do cytokinins affect the cell? Rus J Plant Physiol. 2009;56(2):268–90.
Article
CAS
Google Scholar
Osugi A, Kojima M, Takebayashi Y, Ueda N, Kiba T, Sakakibara H. Systemic transport of trans-zeatin and its precursor have differing roles in Arabidopsis shoots. Nat Plants. 2017;3(8):1–6.
Article
Google Scholar
Großkinsky D, Edelsbrunner K, Pfeifhofer H, Van der Graaff E, Roitsch T. Cis-and trans-zeatin differentially modulate plant immunity. Plant Signal Behav. 2013;8(7):e24798.
Article
PubMed
PubMed Central
Google Scholar
Frank M, Cortleven A, Novák O, Schmülling T. Root-derived trans-zeatin cytokinin protects Arabidopsis plants against photoperiod stress. Plant Cell Environ. 2020;43(11):2637–49.
Article
CAS
PubMed
Google Scholar
Vedenicheva NP, Al-Maali GA, Bisko NA, Shcherbatiuk MM, Lomberg ML, Mytropolska NY, Mykchaylova OB, Kosakivska IV. Comparative analysis of cytokinins in mycelial biomass of medicinal mushrooms. Int J Med Mushrooms. 2018;20(9):837–47.
Article
PubMed
Google Scholar
Morrison EN, Knowles S, Hayward A, Thorn RG, Saville BJ, Emery RJ. Detection of phytohormones in temperate forest fungi predicts consistent abscisic acid production and a common pathway for cytokinin biosynthesis. Mycologia. 2015;107(2):245–57.
Article
CAS
PubMed
Google Scholar
Streletskii RA, Kachalkin AV, Glushakova AM, Yurkov AM, Demin VV. Yeasts producing zeatin. PeerJ. 2019;7:e6474.
Article
PubMed
PubMed Central
Google Scholar
Schäfer M, Brütting C, Meza-Canales ID, Großkinsky DK, Vankova R, Baldwin IT, Meldau S. The role of cis-zeatin-type cytokinins in plant growth regulation and mediating responses to environmental interactions. J Exp Bot. 2015;66(16):4873–84.
Article
PubMed
Google Scholar
Hluska T, Hlusková L, Emery RJ. The Hulks and the Deadpools of the cytokinin universe: A dual strategy for cytokinin production, translocation, and signal transduction. Biomolecules. 2021;11(2):209.
Article
CAS
PubMed
PubMed Central
Google Scholar
Emery RJ, Leport L, Barton JE, Turner NC, Atkins CA. cis-Isomers of cytokinins predominate in chickpea seeds throughout their development. Plant Physiol. 1998;117(4):1515–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quesnelle PE, Emery RN. cis-Cytokinins that predominate in Pisum sativum during early embryogenesis will accelerate embryo growth in vitro. Botany. 2007;85(1):91–103.
Google Scholar
Morrison EN, Emery RJ, Saville BJ. Fungal derived cytokinins are necessary for normal Ustilago maydis infection of maize. Plant Path. 2017;66(5):726–42.
Article
CAS
Google Scholar
Romanov GA. The discovery of cytokinin receptors and biosynthesis of cytokinins: a true story. Rus J Plant Physiol. 2011;58(4):743–7.
Article
CAS
Google Scholar
Kudo T, Kiba T, Sakakibara H. Metabolism and long-distance translocation of cytokinins. J Integr Plant Biol. 2010;52(1):53–60.
Article
CAS
PubMed
Google Scholar
Nguyen HN, Nguyen TQ, Kisiala AB, Emery RJ. Beyond transport: Cytokinin ribosides are translocated and active in regulating the development and environmental responses of plants. Planta. 2021;254(3):1–7.
Article
Google Scholar
Frébort I, Kowalska M, Hluska T, Frébortová J, Galuszka P. Evolution of cytokinin biosynthesis and degradation. J Exp Bot. 2011;62(8):2431–52.
Article
PubMed
Google Scholar
Stirk WA, Van Staden J. Flow of cytokinins through the environment. Plant Growth Regul. 2010;62(2):101–16.
Article
CAS
Google Scholar
Ivanova EG, Doronina NV, Trotsenko YA. Aerobic methylobacteria are capable of synthesizing auxins. Microbiology. 2001;70(4):392–7.
Article
CAS
Google Scholar
Kim AY, Shahzad R, Kang SM, Seo CW, Park YG, Park HJ, Lee IJ. IAA-producing Klebsiella variicola AY13 reprograms soybean growth during flooding stress. J Crop Sci Biotech. 2017;20(4):235–42.
Article
Google Scholar
Gang S, Sharma S, Saraf M, Buck M, Schumacher J. Analysis of indole-3-acetic acid (IAA) production in Klebsiella by LC-MS/MS and the Salkowski method. Bio-protocol. 2019;9(9):e3230.
Schaller GE, Bishopp A, Kieber JJ. The yin-yang of hormones: cytokinin and auxin interactions in plant development. Plant Cell. 2015;27(1):44–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Datta C, Basu PS. Indole acetic acid production by a Rhizobium species from root nodules of a leguminous shrub. Cajanus cajan Microbiol Res. 2000;155(2):123–7.
Article
CAS
PubMed
Google Scholar
Patel T, Saraf M. Biosynthesis of phytohormones from novel rhizobacterial isolates and their in vitro plant growth-promoting efficacy. J Plant Interact. 2017;12(1):480–7.
Article
CAS
Google Scholar
Indiragandhi P, Anandham R, Kim K, Yim W, Madhaiyan M, Sa T. Induction of defense responses in tomato against Pseudomonas syringae pv. tomato by regulating the stress ethylene level with Methylobacterium oryzae CBMB20 containing 1-aminocyclopropane-1-carboxylate deaminase. World J Microbiol Biotechnol. 2008;24(7):1037–45.
Article
CAS
Google Scholar
Chanratana M, Han GH, Choudhury AR, Sundaram S, Halim MA, Krishnamoorthy R, Kang Y, Sa T. Assessment of Methylobacterium oryzae CBMB20 aggregates for salt tolerance and plant growth promoting characteristics for bio-inoculant development. AMB Express. 2017;7(1):1–10.
Article
CAS
Google Scholar
Dobrev PI, Kamınek M. Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J Chromatogr A. 2002;950(1–2):21–9.
Article
PubMed
Google Scholar
Farrow SC, Emery RN. Concurrent profiling of indole-3-acetic acid, abscisic acid, and cytokinins and structurally related purines by high-performance-liquid-chromatography tandem electrospray mass spectrometry. Plant Meth. 2012;8(1):1–8.
Article
Google Scholar
Tarkowski P, Václavíková K, Novák O, Pertry I, Hanuš J, Whenham R, Vereecke D, Šebela M, Strnad M. Analysis of 2-methylthio-derivatives of isoprenoid cytokinins by liquid chromatography–tandem mass spectrometry. Anal Chim Acta. 2010;680(1–2):86–91.
Article
CAS
PubMed
Google Scholar
Gordon SA, Weber RP. Colorimetric estimation of indoleacetic acid. Plant Physiol. 1951;26(1):192–5.
Article
CAS
PubMed
PubMed Central
Google Scholar