Brown GD, Denning DW, Gow NAR, Levitz SM, Netea MG, White TC. Hidden killers: human fungal infections. Sci Transl Med. 2012;4:1–10.
Google Scholar
Bongomin F, Gago S, Oladele R, Denning D. Global and multi-National Prevalence of fungal diseases—estimate precision. J Fungi. 2017;3:57.
Google Scholar
Kronstad JW, Attarian R, Cadieux B, Choi J, D’Souza CA, Griffiths EJ, et al. Expanding fungal pathogenesis: Cryptococcus breaks out of the opportunistic box. Nat Rev Microbiol. 2011;9:193–203.
PubMed
PubMed Central
CAS
Google Scholar
Bermas A, Geddes-McAlister J. Combatting the evolution of anti-fungal resistance in Cryptococcus neoformans. Mol Microbiol. 2020;114:1–14 https://onlinelibrary.wiley.com/doi/full/10.1111/mmi.14565.
Google Scholar
Geddes-McAlister J, Shapiro RS. New pathogens, new tricks: emerging, drug-resistant fungal pathogens and future prospects for antifungal therapeutics. Ann N Y Acad Sci. 2019;1435:57–78.
PubMed
Google Scholar
Perfect JR. The antifungal pipeline: A reality check. Nat Rev Drug Discov. 2017;16:603–16.
PubMed
PubMed Central
CAS
Google Scholar
Alspaugh JA. Virulence mechanisms and Cryptococcus neoformans pathogenesis. Fungal Genet Biol. 2015;78:55–8.
PubMed
CAS
Google Scholar
Vu K, Garcia JA, Gelli A. Cryptococcal meningitis and antivirulence therapeutic strategies. Front Microbiol. 2019:https://doi.org/10.3389/fmicb.2019.00353.
Rajasingham R, Smith RM, Park BJ, Jarvis JN, Govender NP, Chiller TM, et al. Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Lancet Infect Dis. 2017;17:873–81.
PubMed
PubMed Central
Google Scholar
Waldron KJ, Rutherford JC, Ford D, Robinson NJ. Metalloproteins and metal sensing. Nature. 2009;460:823–30.
PubMed
CAS
Google Scholar
Skaar EP. The battle for iron between bacterial pathogens and their vertebrate hosts. PLoS Pathog. 2010;6:e1000949.
PubMed
PubMed Central
Google Scholar
Kehl-Fie TE, Skaar EP. Nutritional immunity beyond iron: a role for manganese and zinc. Curr Opin Chem Biol. 2010;14:218–24.
PubMed
CAS
Google Scholar
Kronstad JW, Hu G, Jung WH. An encapsulation of iron homeostasis and virulence in Cryptococcus neoformans. Trends Microbiol. 2013.
Bairwa G, Hee Jung W, Kronstad JW. Iron acquisition in fungal pathogens of humans. Metallomics : integrated biometal science. 2017.
Cadieux B, Lian T, Hu G, Wang J, Biondo C, Teti G, et al. The mannoprotein cig1 supports iron acquisition from heme and virulence in the pathogenic fungus cryptococcus neoformans. J Infect Dis. 2013.
Muselius B, Sukumaran A, Yeung J, Geddes-McAlister J. Iron limitation in Klebsiella pneumoniae defines new roles for Lon protease in homeostasis and degradation by quantitative proteomics. Front Microbiol. 2020;11:546.
PubMed
PubMed Central
Google Scholar
Kronstad JW, Caza M. Shared and distinct mechanisms of iron acquisition by bacterial and fungal pathogens of humans. Frontiers in cellular and infection. Microbiology. 2013.
Andreini C, Banci L, Bertini I, Rosato A. Zinc through the three domains of life. J Proteome Res. 2006;5:3173–8.
PubMed
CAS
Google Scholar
Djoko KY, Ong CY, Walker MJ, McEwan AG. The role of copper and zinc toxicity in innate immune defense against bacterial pathogens. J Biol Chem. 2015;290:18954–61.
PubMed
PubMed Central
CAS
Google Scholar
Dineley KE, Votyakova TV, Reynolds IJ. Zinc inhibition of cellular energy production: implications for mitochondria and neurodegeneration. J Neurochem. 2003;85:563–70.
PubMed
CAS
Google Scholar
Pagani MA, Casamayor A, Serrano R, Atrian S, Ariño J. Disruption of iron homeostasis in Saccharomyces cerevisiae by high zinc levels: a genome-wide study. Mol Microbiol. 2007;65:521–37.
PubMed
CAS
Google Scholar
Sukumaran A, Pladwig S, Geddes-McAlister J. Zinc limitation in Klebsiella pneumoniae influences protein abundance and capsule production. BMC Microbiol. 2021;In Press.
Lulloff SJ, Hahn BL, Sohnle PG. Fungal susceptibility to zinc deprivation. J Lab Clin Med. 2004;144:208–14.
PubMed
CAS
Google Scholar
Hood MI, Skaar EP. Nutritional immunity: transition metals at the pathogen-host interface. Nat Rev Microbiol. 2012;10:525–37.
PubMed
CAS
Google Scholar
Winters MS, Chan Q, Caruso JA, Deepe GS Jr. Metallomic analysis of macrophages infected with Histoplasma capsulatum reveals a fundamental role for zinc in host defenses. J Infect Dis. 2010;202:1136–45.
PubMed
CAS
Google Scholar
Botella H, Peyron P, Levillain F, Poincloux R, Poquet Y, Brandli I, et al. Mycobacterial P1-type ATPases mediate resistance to zinc poisoning in human macrophages. Cell Host Microbe. 2011;10:248–59.
PubMed
PubMed Central
CAS
Google Scholar
Zhao H, Eide D. The yeast ZRT1 gene encodes the zinc transporter protein of a high-affinity uptake system induced by zinc limitation. Proc Natl Acad Sci. 1996;93:2454–8.
PubMed
PubMed Central
CAS
Google Scholar
Eide DJ. Zinc transporters and the cellular trafficking of zinc. Biochim Biophys Acta - Mol Cell Res. 2006;1763:711–22.
CAS
Google Scholar
Do E, Hu G, Caza M, Kronstad J, Jung WH. The ZIP family zinc transporters support the virulence of cryptococcus neoformans. Med Mycol. 2016;54:605–15.
PubMed
PubMed Central
CAS
Google Scholar
Kambe T, Tsuji T, Hashimoto A, Itsumura N. The physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis and metabolism. Physiol Rev. 2015;95:749–84.
PubMed
CAS
Google Scholar
Muñoz MJ, Bejarano ER, Daga RR, Jimenez J. The identification of Wos2, a p23 homologue that interacts with Wee1 and Cdc2 in the mitotic control of fission yeasts. Genetics. 1999;153:1561–72.
PubMed
PubMed Central
Google Scholar
García-Rodas R, Cordero RJB, Trevijano-Contador N, Janbon G, Moyrand F, Casadevall A, et al. Capsule growth in Cryptococcus neoformans is coordinated with cell cycle progression. MBio. 2014;5:e00945–14.
PubMed
PubMed Central
Google Scholar
Ballou ER, Wilson D. The roles of zinc and copper sensing in fungal pathogenesis. Curr Opin Microbiol. 2016.
de Oliveira Schneider R, de Souza Süffert Fogaça N, Kmetzsch L, Schrank A, Vainstein MH, Staats CC. Zap1 regulates zinc homeostasis and modulates virulence in Cryptococcus gattii. PLoS One 2012;7:e43773.
Ball B, Langille M, Geddes-McAlister J. Fun(gi)OMICS: advanced and diverse technologies to explore emerging fungal pathogens. MBio. 2020;11:e01020–0.
Ball B, Bermas A, Carruthers-Lay D, Geddes-McAlister J. Mass Spectrometry-Based Proteomics of Fungal Pathogenesis, Host–Fungal Interactions, and Antifungal Development. J Fungi 2019;5:52.
Ball B, Geddes-McAlister J. Quantitative proteomic profiling of Cryptococcus neoformans. Curr Protoc Microbiol. 2019;55:e94.
PubMed
CAS
Google Scholar
Rappsilber J, Mann M, Ishihama Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc. 2007;2:1896–906.
PubMed
CAS
Google Scholar
Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26:1367–72.
PubMed
CAS
Google Scholar
Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods. 2016;13:731–40.
PubMed
CAS
Google Scholar
Peariso K, Goulding CW, Huang S, Matthews RG, Penner-Hahn JE. Characterization of the zinc binding site in methionine synthase enzymes of Escherichia coli: the role of zinc in the methylation of homocysteine. J Am Chem Soc. 1998;120:8410–6.
CAS
Google Scholar
Cox J, Mann M. 1D and 2D annotation enrichment: a statistical method integrating quantitative proteomics with complementary high-throughput data. BMC Bioinformatics. 2012;13:S12.
PubMed
PubMed Central
CAS
Google Scholar
Chantranupong L, Wolfson RL, Sabatini DM. Nutrient-sensing mechanisms across evolution. Cell. 2015;161:67–83.
PubMed
PubMed Central
CAS
Google Scholar
Parente AFA bi., de Rezende TCV, de Castro KP, Bailão AM, Parente JA, Borges CL, et al. A proteomic view of the response of Paracoccidioides yeast cells to zinc deprivation. Fungal Biol 2013;117:399–410. doi:https://doi.org/10.1016/j.funbio.2013.04.004.
Rodrigues ML, Nakayasu ES, Oliveira DL, Nimrichter L, Nosanchuk JD, Almeida IC, et al. Extracellular vesicles produced by Cryptococcus neoformans contain protein components associated with virulence. Eukaryot Cell. 2008;7:58–67.
PubMed
CAS
Google Scholar
Karkowska-Kuleta J, Satala D, Bochenska O, Rapala-Kozik M, Kozik A. Moonlighting proteins are variably exposed at the cell surfaces of Candida glabrata, Candida parapsilosis and Candida tropicalis under certain growth conditions. BMC Microbiol. 2019;19:149.
PubMed
PubMed Central
Google Scholar
Satala D, Karkowska-Kuleta J, Zelazna A, Rapala-Kozik M, Kozik A. Moonlighting proteins at the candidal cell surface. Microorganisms. 2020;8:1046.
PubMed Central
CAS
Google Scholar
Voelz K, May RC. Cryptococcal interactions with the host immune system. Eukaryot Cell. 2010;9:835–46.
PubMed
PubMed Central
CAS
Google Scholar
Wilson D, Citiulo F, Hube B. Zinc exploitation by pathogenic Fungi. PLoS Pathog. 2012;8:e1003034.
PubMed
PubMed Central
CAS
Google Scholar
Sheldon JR, Skaar EP. Metals as phagocyte antimicrobial effectors. Curr Opin Immunol. 2019;60:1–9. https://doi.org/10.1016/j.coi.2019.04.002.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wilson D, Deepe GS. The intersection of host and fungus through the zinc lens. Curr Opin Microbiol. 2019;52:35–40.
PubMed
PubMed Central
CAS
Google Scholar
Berges MSL. ZafA-mediated regulation of zinc homeostasis is required for virulence in the plant pathogen Fusarium oxysporum. Mol Plant Pathol. 2018;21:244–9.
Google Scholar
Crawford AC, Lehtovirta-Morley LE, Alamir O, Niemiec MJ, Alawfi B, Alsarraf M, et al. Biphasic zinc compartmentalisation in a human fungal pathogen. PLoS Pathog. 2018;14:e1007013.
PubMed
PubMed Central
Google Scholar
Amich J, Vicentefranqueira R, Leal F, Calera JA. Aspergillus fumigatus survival in alkaline and extreme zinc-limiting environments relies on the induction of a zinc homeostasis system encoded by the zrfc and aspf2 genes. Eukaryot Cell. 2010;9:424–37.
PubMed
PubMed Central
CAS
Google Scholar
Sheehan LM, Budnick JA, Roop RM, Caswell CC. Coordinated zinc homeostasis is essential for the wild-type virulence of Brucella abortus. J Bacteriol. 2015;197:1582–91.
PubMed
PubMed Central
CAS
Google Scholar
Dambuza IM, Drake T, Chapuis A, Zhou X, Correia J, Taylor-Smith L, et al. The Cryptococcus neoformans Titan cell is an inducible and regulated morphotype underlying pathogenesis. PLoS Pathog. 2018;14:1–28. https://doi.org/10.1371/journal.ppat.1006978.
Article
CAS
Google Scholar
Chimienti F, Aouffen M, Favier A, Seve M. Zinc homeostasis-regulating proteins: new drug targets for triggering cell fate. Curr Drug Targets. 2005;4:323–38.
Google Scholar
Simm C, May RC. Zinc and iron homeostasis: target-based drug screening as new route for antifungal drug development. Front Cell Infect Microbiol. 2019;9:181.
PubMed
PubMed Central
CAS
Google Scholar
Gu X, Xue W, Yin Y, Liu H, Li S, Sun X. The Hsp90 co-chaperones Sti1, Aha1, and P23 regulate adaptive responses to antifungal azoles. Front Microbiol. 2016;5:1571.
Google Scholar
Wis̈niewski JR, Gaugaz FZ. Fast and sensitive total protein and peptide assays for proteomic analysis. Anal Chem. 2015;87:4110–6.
PubMed
Google Scholar
Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M. Andromeda: A peptide search engine integrated into the MaxQuant environment. J Proteome Res. 2011;10:1794–805.
PubMed
CAS
Google Scholar
Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, Termed MaxLFQ. Mol Cell Proteomics. 2014;13:2513–26. https://doi.org/10.1074/mcp.M113.031591.
Article
PubMed
PubMed Central
CAS
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57:289–300.
Google Scholar
R Foundation for Statistical Computing. R: a Language and Environment for Statistical Computing. 2018.
Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–13.
PubMed
CAS
Google Scholar
Jung K-W, Lee K-T, So Y-S, Bahn Y-S. Genetic manipulation of Cryptococcus neoformans. Curr Protoc Microbiol. 2018;50:e59.
PubMed
Google Scholar
Davidson RC, Cruz MC, Sia RA, Allen B, Alspaugh JA, Heitman J. Gene disruption by biolistic transformation in serotype D strains of Cryptococcus neoformans. Fungal Genet Biol. 2000;29:38–48.
PubMed
CAS
Google Scholar
Park HS, Chow EWL, Fu C, Soderblom EJ, Moseley MA, Heitman J, et al. Calcineurin targets involved in stress survival and fungal virulence. PLoS Pathog. 2016.
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–9.
PubMed
PubMed Central
Google Scholar
Bushnell B, Rood J, Singer E. BBMerge – accurate paired shotgun read merging via overlap. PLoS One. 2017;12:1–15.
Google Scholar
Darling ACE, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004.
Rissman AI, Mau B, Biehl BS, Darling AE, Glasner JD, Perna NT. Reordering contigs of draft genomes using the mauve aligner. Bioinformatics. 2009.
Vartivarian SE, Anaissie EJ, Cowart RE, Sprigg HA, Tingler MJ, Jacobson ES. Regulation of cryptococcal capsular polysaccharide by iron. J Infect Dis. 1993;167:186–90.
PubMed
CAS
Google Scholar
Yoneda A, Doering TL. Regulation of Cryptococcus neoformans capsule size is mediated at the polymer level. Eukaryot Cell. 2008;7:546–9.
PubMed
CAS
Google Scholar
Casadevall A, Cleare W, Feldmesser M, Glatman-Freedman A, Goldman DL, Kozel TR, et al. Characterization of a murine monoclonal antibody to Cryptococcus neoformans polysaccharide that is a candidate for human therapeutic studies. Antimicrob Agents Chemother. 1998;42:1437–46.
PubMed
PubMed Central
CAS
Google Scholar
Wormley FL, Perfect JR. Immunology of infection caused by Cryptococcus neoformans. In: Antifungal Agents. Methods in Molecular Medicine. 2005. 193.