Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet. 2001;358(9276):135–8.
Article
CAS
PubMed
Google Scholar
Hoffman LR, D'argenio DA, MacCoss MJ, Zhang Z. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature. 2005;436(7054):1171.
Article
CAS
PubMed
Google Scholar
Lu Z, Breidt F, Plengvidhya V, Fleming H. Bacteriophage ecology in commercial sauerkraut fermentations. Appl Environ Microbiol. 2003;69(6):3192–202.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rohwer F. Global phage diversity. Cell. 2003;113(2):141.
Article
CAS
PubMed
Google Scholar
Breitbart M, Wegley L, Leeds S, Schoenfeld T, Rohwer F. Phage community dynamics in hot springs. Appl Environ Microbiol. 2004;70(3):1633–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Filée J, Tétart F, Suttle CA, Krisch H. Marine T4-type bacteriophages, a ubiquitous component of the dark matter of the biosphere. Proc Natl Acad Sci U S A. 2005;102(35):12471–6.
Article
PubMed
PubMed Central
Google Scholar
Burent FM. The phage-inactivating agent of bacterial extracts. J Pathol. 1934;38(3):285–99.
Article
Google Scholar
Burnet F, Freeman M. A comparative study of the inactivation of a bacteriophage by immune serum and by bacterial polysaccharide. Aust J Exp Biol Med Sci. 1937;15(1):49–61.
Article
CAS
Google Scholar
Colvin M. Behavior of bacteriophage in body fluids and in exudates. J Infect Dis. 1932:51(3):527–41.
Article
CAS
Google Scholar
Levine P, Frisch A. On specific inhibition of bacteriophage action by bacterial extracts. J Exp Med. 1934;59(2):213.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pattee P. Use of tetrazolium for improved resolution of bacteriophage plaques. J Bacteriol. 1966;92(3):787.
CAS
PubMed
PubMed Central
Google Scholar
Kaur S, Harjai K, Chhibber S. Methicillin-resistant Staphylococcus aureus phage plaque size enhancement using sublethal concentrations of antibiotics. Appl Environ Microbiol. 2012;78(23):8227–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mattila S, Ruotsalainen P, Jalasvuori M. On-demand isolation of bacteriophages against drug-resistant bacteria for personalized phage therapy. Front Microbiol. 2015;6:1271.
Article
PubMed
PubMed Central
Google Scholar
Twest VR, Kropinski AM. Bacteriophage enrichment from water and soil. In: MRJaKe C, editor. Bacteriophages: methods and protocols. Vol. 1; 2009. p. 15–21.
Chapter
Google Scholar
Pincus NB, Reckhow JD, Saleem D, Jammeh ML, Datta SK, Myles IA. Strain specific phage treatment for Staphylococcus aureus infection is influenced by host immunity and site of infection. PLoS One. 2015;10(4):e0124280.
Article
PubMed
PubMed Central
Google Scholar
O'Flaherty S, Ross RP, Coffey A. Bacteriophage and their lysins for elimination of infectious bacteria. FEMS Microbiol Rev. 2009;33(4):801–19.
Article
CAS
PubMed
Google Scholar
Keary R, McAuliffe O, Ross RP, Hill C, O'Mahony J, Coffey A. Genome analysis of the staphylococcal temperate phage DW2 and functional studies on the endolysin and tail hydrolase. Bacteriophage. 2014;4:e28451.
Article
PubMed
PubMed Central
Google Scholar
Rodriguez-Rubio L, Martinez B, Donovan DM, Rodriguez A, Garcia P. Bacteriophage virion-associated peptidoglycan hydrolases: potential new enzybiotics. Crit Rev Microbiol. 2013;39(4):427–34.
Article
CAS
PubMed
Google Scholar
Zhang L, Li D, Li X, et al. LysGH15 kills Staphylococcus aureus without being affected by the humoral immune response or inducing inflammation. Sci Rep. 2016;6:29344.
Article
PubMed
PubMed Central
Google Scholar
Garrett TR, Bhakoo M, Zhang Z. Bacterial adhesion and biofilms on surfaces. Prog Nat Sci Mater Int. 2008;18(9):1049–56.
Article
CAS
Google Scholar
García P, Madera C, Martínez B, Rodríguez A. Biocontrol of Staphylococcus aureus in curd manufacturing processes using bacteriophages. Int Dairy J. 2007;17:1232–9.
Article
Google Scholar
Obeso JM, Martinez B, Rodriguez A, Garcia P. Lytic activity of the recombinant staphylococcal bacteriophage PhiH5 endolysin active against Staphylococcus aureus in milk. Int J Food Microbiol. 2008;128:212–8.
Article
CAS
PubMed
Google Scholar
Sass P, Bierbaum G. Lytic activity of recombinant bacteriophage Φ11 and Φ12 endolysins on whole cells and biofilms of Staphylococcus aureus. Appl Environ Microbiol. 2007;73:347–52.
Article
CAS
PubMed
Google Scholar
Kelly D, McAuliffe O, Ross RP, et al. Development of a broad-host-range phage cocktail for biocontrol. Bioeng Bugs. 2011;2:31–7. https://doi.org/10.4161/bbug.2.1.13657.
Article
PubMed
Google Scholar
Seth AK, Geringer MR, Nguyen KT, et al. Bacteriophage therapy for Staphylococcus aureus biofilm-infected wounds: a new approach to chronic wound care. Plast Reconstr Surg. 2013;131:225–34.
Article
CAS
PubMed
Google Scholar
Melo LDRL, Brandão A, Akturk E, et al. Characterization of a new Staphylococcus aureus Kayvirus harboring a lysin active against biofilms. Viruses. 2018;10:182. https://doi.org/10.3390/v10040182.
Article
CAS
PubMed Central
Google Scholar
Latka A, Maciejewska B, Majkowska-Skrobek G, Briers Y, Drulis-Kawa Z. Bacteriophage-encoded virion-associated enzymes to overcome the carbohydrate barriers during the infection process. Appl Microbiol Biotechnol. 2017;101(8):3103–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Doolittle MM, Cooney JJ, Caldwell DE. Tracing the interaction of bacteriophage with bacterial biofilms using fluorescent and chromogenic probes. J Ind Microbiol. 1996;16:331–41.
Article
CAS
PubMed
Google Scholar
Cerca N, Oliveira R, Azeredo J. Susceptibility of Staphylococcus epidermidis planktonic cells and biofilms to the lytic action of staphylococcus bacteriophage K. Lett Appl Microbiol. 2007;45(3):313–7.
Article
CAS
PubMed
Google Scholar
Sillankorva S, Neubauer P, Azaredo J. Use of bacteriophages to control biofilms. LAP Lambert academic publishing. Germany: Saarbrücken; 2011.
Google Scholar
Viazis S, Akhtar M, Feirtag J, Brabban AD, Diez-Gonzalez F. Isolation and characterization of lytic bacteriophages against enterohaemorrhagic Escherichia coli. J Appl Microbiol. 2011;110(5):1323–31.
Article
CAS
PubMed
Google Scholar
ICTV. Virus Taxonomy In: King AMQ, Adams MJ, EB C, EJ L, eds. Ninth Report of the International Committee on Taxonomy of Viruses. Vol. 10. London, Elsevier. 2011.
Ackermann H-W. Tailed bacteriophages: the order Caudovirales. Adv Virus Res. 1998;51:135–201.
Article
CAS
PubMed
PubMed Central
Google Scholar
El-Arabi TF, Griffiths MW, She Y-M, Villegas A, Lingohr EJ, Kropinski AM. Genome sequence and analysis of a broad-host range lytic bacteriophage that infects the Bacillus cereus group. Virol J. 2013;10(1):48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pajunen M, Kiljunen S, Skurnik M. Bacteriophage φYeO3-12, specific for Yersinia enterocolitica serotype O: 3, is related to Coliphages T3 and T7. J Bacteriol. 2000;182(18):5114–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amarillas L, Rubi-Rangel L, Chaidez C, Gonzalez-Robles A, Lightbourn-Rojas L, Leon-Felix J. Isolation and characterization of phiLLS, a novel phage with potential biocontrol agent against multidrug-resistant Escherichia coli. Front Microbiol. 2017;8:1355.
Article
PubMed
PubMed Central
Google Scholar
Labonté JM, Swan BK, Poulos B, Luo H, Koren S, Hallam SJ, Sullivan MB, Woyke T, Wommack KE, Stepanauskas R. Single-cell genomics-based analysis of virus–host interactions in marine surface bacterioplankton. ISME J. 2015;9:2386–99.
Article
PubMed
PubMed Central
Google Scholar
Arber W, Hattman S, Dussoix D. On the host-controlled modification of bacteriophage λ. Virol. 1963;21(1):30–5.
Article
CAS
Google Scholar
Franklin NC, Dove WF. Genetic evidence for restriction targets in the DNA of phages λ and φ 80. Genet Res. 1969;14(2):151–7.
Article
CAS
PubMed
Google Scholar
Scheller HV, Ulvskov P. Hemicelluloses. Annu Rev Plant Biol. 2010;61:263–89.
Article
CAS
PubMed
Google Scholar
Bielen A, Cetkovic H, Long PF, Schwab H, Abramic M, Vujaklija D. The SGNH-hydrolase of Streptomyces coelicolor has (aryl) esterase and a true lipase activity. Biochimie. 2009;91(3):390–400.
Article
CAS
PubMed
Google Scholar
Dakheel KH, Abdul Rahim R, Neela VK, Al-Obaidi JR, Tan GH, Yusoff K. Methicillin-resistant Staphylococcus aureus biofilms and their influence on bacterial adhesion and cohesion. Biomed Res Int. 2016;2016:4708425.
Article
PubMed
PubMed Central
Google Scholar
Kagan S, Jabbour A, Sionov E, et al. Anti-Candida albicans biofilm effect of novel heterocyclic compounds. J Antimicrob Chemother. 2014;69(2):416–27.
Article
CAS
PubMed
Google Scholar
Loehfelm TW, Luke NR, Campagnari AA. Identification and characterization of an Acinetobacter baumannii biofilm-associated protein. J Bacteriol. 2008;190(3):1036–44.
Article
CAS
PubMed
Google Scholar
Lynch SV, Mukundakrishnan K, Benoit MR, Ayyaswamy PS, Matin A. Escherichia coli biofilms formed under low-shear modeled microgravity in a ground-based system. Appl Environ Microbiol. 2006;72(12):7701–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Romling U, Balsalobre C. Biofilm infections, their resilience to therapy and innovative treatment strategies. J Intern Med. 2012;272(6):541–61.
Article
CAS
PubMed
Google Scholar
Gallet R, Shao Y, Wang N. High adsorption rate is detrimental to bacteriophage fitness in a biofilm-like environment. BMC Evol Biol. 2009;9(1):241.
Article
PubMed
PubMed Central
Google Scholar
Edwards RA, Opinion RF. viral metagenomics. Nature Rev Microbiol. 2005;3(6):504.
Article
CAS
Google Scholar
Rohwer F, Thurber RV. Viruses manipulate the marine environment. Nature. 2009;459(7244):207.
Article
CAS
PubMed
Google Scholar
Rydman PS, Bamford DH. Bacteriophage PRD1 DNA entry uses a viral membrane-associated transglycosylase activity. Mol Microbiol. 2000;37(2):356–63.
Article
CAS
PubMed
Google Scholar
Moak M, Molineux IJ. Peptidoglycan hydrolytic activities associated with bacteriophage virions. Mol Microbiol. 2004;51(4):1169–83.
Article
CAS
PubMed
Google Scholar
Curtin JJ, Donlan RM. Using bacteriophages to reduce formation of catheter-associated biofilms by Staphylococcus epidermidis. Antimicrob Agents Chemother. 2006;50(4):1268–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deghorain M, Van Melderen L. The staphylococci phages family: an overview. Viruses. 2012;4(12):3316–35.
Article
PubMed
PubMed Central
Google Scholar
Alibayov B, Baba-Moussa L, Sina H, Zdenkova K, Demnerova K. Staphylococcus aureus mobile genetic elements. Mol Biol Rep. 2014;41(8):5005–18.
Article
CAS
PubMed
Google Scholar
Lobocka M, Hejnowicz MS, Dabrowski K, et al. Genomics of staphylococcal Twort-like phages--potential therapeutics of the post-antibiotic era. Adv Virus Res. 2012;83:143–216.
Article
CAS
PubMed
Google Scholar
Bull JJ, Vegge CS, Schmerer M, Chaudhry WN, Levin BR. Phenotypic resistance and the dynamics of bacterial escape from phage control. PLoS One. 2014;9(4):e94690.
Article
PubMed
PubMed Central
Google Scholar
Delbrück M. The growth of bacteriophage and lysis of the host. J Gen Physiol. 1940;23(5):643–60.
Article
PubMed
PubMed Central
Google Scholar
Sutherland WI, Hughes KA, Skillman LC, Tait K. The interaction of phage and biofilms. FEMS Microbiol Lett. 2004;232(1):1–6.
Article
CAS
PubMed
Google Scholar
Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms. Nat Rev Microbiol. 2010;8:317–27.
Article
CAS
PubMed
Google Scholar
Marraffini LA, Sontheimer EJ. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science. 2008;322(5909):18431845 https://doi.org/10.1126/science.1165771.
Article
Google Scholar
Hyman P, Abedon ST. Bacteriophage host range and bacterial resistance. Adv Appl Microbiol 2010; 70: 217–248. ISSN 0065-2164, DOI: https://doi.org/10.1016/S0065-2164(10)70007-1.
Chapter
Google Scholar
Campos D, Mendez V, Fedotov S. The effects of distributed life cycles on the dynamics of viral infections. J Theor Biol. 2008;254(2):430–8.
Article
PubMed
Google Scholar
Azeredo J, Sutherland IW. The use of phages for the removal of infectious biofilms. Curr Pharm Biotechnol. 2008;9(4):261–6.
Article
CAS
PubMed
Google Scholar
Lenski RE, Levin BR. Constraints on the coevolution of bacteria and virulent phage: a model, some experiments, and predictions for natural communities. Am Nat. 1985;125(4):585–602.
Article
Google Scholar
Siqueira JF Jr, Rocas IN. Clinical implications and microbiology of bacterial persistence after treatment procedures. J Endod. 2008;34(11):1291–301 e3.
Article
PubMed
Google Scholar
Briandet R, Lacroix-Gueu P, Renault M, et al. Fluorescence correlation spectroscopy to study diffusion and reaction of bacteriophages inside biofilms. Appl Environ Microbiol. 2008;74(7):2135–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bohannan BJ, Lenski RE. Linking genetic change to community evolution: insights from studies of bacteria and bacteriophage. Ecol Lett. 2000;3(4):362–77.
Article
Google Scholar
Pires D, Sillankorva S, Faustino A, Azeredo J. Use of newly isolated phages for control of Pseudomonas aeruginosa PAO1 and ATCC 10145 biofilms. Res Microbiol. 2011;162(8):798–806.
Article
CAS
PubMed
Google Scholar
Adams M. Bacteriophages. New York: Interscience Publishers Inc; 1959.
Google Scholar
Phagesdb.org. Plaque Purification. Phage hunting protocols. Pittsburgh Bacteriophage Institute, University of Pittsburgh. 2013.
Sambrook J, Russell D. Molecular cloning: a laboratory manual; 2012.
Google Scholar
Ghaznavi-Rad E, Nor Shamsudin M, Sekawi Z, et al. Predominance and emergence of clones of hospital-acquired methicillin-resistant Staphylococcus aureus in Malaysia. J Clin Microbiol. 2010;48(3):867–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alves DR, Gaudion A, Bean JE, et al. Combined use of bacteriophage K and a novel bacteriophage to reduce Staphylococcus aureus biofilm formation. Appl Environ Microbiol. 2014;80(21):6694–703.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carlson K. Working with bacteriophages. In: Kutter E, Sulakvelidze A, editors. Bacteriophages: biology and applications. Croatia: CRC Press; 2004. p. 437–94.
Boulanger P. Purification of bacteriophages and SDS-PAGE analysis of phage structural proteins from ghost particles. In: MRJCaAM K, editor. Bacteriophages methods and protocols. Vol. 2; 2009. p. 227–38.
Google Scholar
Hurwitz BL, Deng L, Poulos BT, Sullivan MB. Evaluation of methods to concentrate and purify ocean virus communities through comparative, replicated metagenomics. Environ Microbiol. 2013;15(5):1428–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gentile M, Gelderblom HR. Electron microscopy in rapid viral diagnosis: an update. New Microbiol. 2014;37(4):403–22.
PubMed
Google Scholar
Gregory D, Pirie B. Wetting agents for biological electron microscopy. J Microsc. 1973;99(3):251–65.
Article
CAS
PubMed
Google Scholar
Arndt D, Grant J, Marcu A, Sajed T, Pon A, Liang Y, Wishart DS. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016;44(W1):W16–W21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS. PHAST: a fast phage search tool. Nucleic Acids Res. 2011;39:W347–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol. 1993;10:512–26.
CAS
PubMed
Google Scholar
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goerke C, Pantucek R, Holtfreter S, Schulte B, Zink M, Grumann D, BM B¨k, Doskar J, Wolz C. Diversity of prophages in dominant Staphylococcus aureus clonal lineages. J Bacteriol. 2009;191:3462–8.
Article
CAS
PubMed
PubMed Central
Google Scholar