Vicente JG, Holub EB. Xanthomonas campestris pv. campestris (cause of black rot of crucifers) in the genomic era is still a worldwide threat to brassica crops. Mol Plant Pathol. 2013;14(1):2–18.
Article
PubMed
CAS
Google Scholar
Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, et al. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol. 2012;13(6):614–29.
Article
PubMed
Google Scholar
da Silva AC, Ferro JA, Reinach FC, Farah CS, Furlan LR, Quaggio RB, et al. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature. 2002;417(6887):459–63.
Article
PubMed
Google Scholar
Qian W, Jia Y, Ren SX, He YQ, Feng JX, Lu LF, et al. Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv. campestris. Genome Res. 2005;15(6):757–67.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vorhölter FJ, Schneiker S, Goesmann A, Krause L, Bekel T, Kaiser O, et al. The genome of Xanthomonas campestris pv. campestris B100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis. J Biotechnol. 2008;134(1–2):33–45.
Article
PubMed
CAS
Google Scholar
Tang JL, Liu YN, Barber CE, Dow JM, Wootton JC, Daniels MJ. Genetic and molecular analysis of a cluster of rpf genes involved in positive regulation of synthesis of extracellular enzymes and polysaccharide in Xanthomonas campestris pathovar campestris. Mol Gen Genet. 1991;226(3):409–17.
Article
PubMed
CAS
Google Scholar
Arlat M, Gough CL, Barber CE, Boucher C, Daniels MJ. Xanthomonas campestris contains a cluster of hrp genes related to the larger hrp cluster of Pseudomonas solanacearum. Mol Plant-Microbe Interact. 1991;4(6):593–601.
Article
PubMed
CAS
Google Scholar
Ryan RP, Vorholter FJ, Potnis N, Jones JB, Van Sluys MA, Bogdanove AJ, et al. Pathogenomics of Xanthomonas: understanding bacterium–plant interactions. Nat Rev Microbiol. 2011;9(5):344–55.
Article
PubMed
CAS
Google Scholar
Barber CE, Tang JL, Feng JX, Pan MQ, Wilson TJ, Slater H, et al. A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule. Mol Microbiol. 1997;24(3):555–66.
Article
PubMed
CAS
Google Scholar
Dow JM, Crossman L, Findlay K, He YQ, Feng JX, Tang JL. Biofilm dispersal in Xanthomonas campestris is controlled by cell-cell signaling and is required for full virulence to plants. Proc Natl Acad Sci U S A. 2003;100(19):10995–1000.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cai Z, Yuan ZH, Zhang H, Pan Y, Wu Y, Tian XQ, et al. Fatty acid DSF binds and allosterically activates histidine kinase RpfC of phytopathogenic bacterium Xanthomonas campestris pv. campestris to regulate quorum-sensing and virulence. PLoS Pathog. 2017;13(4):e1006304.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dow M. Diversification of the function of cell-to-cell signaling in regulation of virulence within plant pathogenic xanthomonads. Sci Signal. 2008;1(21):pe23.
Article
PubMed
Google Scholar
Ryan RP, Dow JM. Communication with a growing family: diffusible signal factor (DSF) signaling in bacteria. Trends Microbiol. 2011;19(3):145–52.
Article
PubMed
CAS
Google Scholar
Chin KH, Lee YC, Tu ZL, Chen CH, Tseng YH, Yang JM, et al. The cAMP receptor-like protein CLP is a novel c-di-GMP receptor linking cell-cell signaling to virulence gene expression in Xanthomonas campestris. J Mol Biol. 2010;396(3):646–62.
Article
PubMed
CAS
Google Scholar
He YW, Ng AY, Xu M, Lin K, Wang LH, Dong YH, et al. Xanthomonas campestris cell-cell communication involves a putative nucleotide receptor protein Clp and a hierarchical signalling network. Mol Microbiol. 2007;64(2):281–92.
Article
PubMed
CAS
Google Scholar
He YW, Zhang LH. Quorum sensing and virulence regulation in Xanthomonas campestris. FEMS Microbiol Rev. 2008;32(5):842–57.
Article
PubMed
CAS
Google Scholar
Ryan RP, Fouhy Y, Lucey JF, Jiang BL, He YQ, Feng JX, et al. Cyclic di-GMP signalling in the virulence and environmental adaptation of Xanthomonas campestris. Mol Microbiol. 2007;63(2):429–42.
Article
PubMed
CAS
Google Scholar
Alfano JR, Collmer A. Type III secretion system effector proteins: double agents in bacterial disease and plant defense. Annu Rev Phytopathol. 2004;42:385–414.
Article
PubMed
CAS
Google Scholar
Cornelis GR, Van Gijsegem F. Assembly and function of type III secretory systems. Annu Rev Microbiol. 2000;54:735–74.
Article
PubMed
CAS
Google Scholar
Jones JD, Dangl JL. The plant immune system. Nature. 2006;444(7117):323–9.
Article
PubMed
CAS
Google Scholar
Huang DL, Tang DJ, Liao Q, Li XQ, He YQ, Feng JX, et al. The Zur of Xanthomonas campestris is involved in hypersensitive response and positively regulates the expression of the hrp cluster via hrpX but not hrpG. Mol Plant-Microbe Interact. 2009;22(3):321–9.
Article
PubMed
CAS
Google Scholar
Li RF, Lu GT, Lei Li SHZ, Feng GF, Chen Y, et al. Identification of a putative cognate sensor kinase for the two-component response regulator HrpG, a key regulator controlling the expression of the hrp genes in Xanthomonas campestris pv. campestris. Environ Microbiol. 2014;16(7):2053–71.
Article
PubMed
CAS
Google Scholar
Gay P, Le Coq D, Steinmetz M, Berkelman T, Kado CI. Positive selection procedure for entrapment of insertion sequence elements in gram-negative bacteria. J Bacteriol. 1985;164(2):918–21.
PubMed
PubMed Central
CAS
Google Scholar
Daniels MJ, Barber CE, Turner PC, Cleary WG, Sawczyc MK. Isolation of mutants of Xanthomonas campestris pv. campestris. showing altered pathogenicity Microbiology. 1984;130(9):2447–55.
Google Scholar
Jiang GF, Jiang BL, Yang M, Liu S, Liu J, Liang XX, et al. Establishment of an inducing medium for type III effector secretion in Xanthomonas campestris pv. campestris. Braz J Microbiol. 2014;44(3):945–52.
Article
PubMed
PubMed Central
Google Scholar
Recorbet G, Robert C, Givaudan A, Kudla B, Normand P, Faurie G. Conditional suicide system of Escherichia coli released into soil that uses the Bacillus subtilis sacB gene. Appl Environ Microbiol. 1993;59(5):1361–6.
PubMed
PubMed Central
CAS
Google Scholar
Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene. 1994;145(1):69–73.
Article
PubMed
Google Scholar
Huynh TV, Dahlbeck D, Staskawicz BJ. Bacterial blight of soybean: regulation of a pathogen gene determining host cultivar specificity. Science. 1989;245(4924):1374–7.
Article
PubMed
CAS
Google Scholar
Yanisch-Perron C, Vieira J, Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–19.
Article
PubMed
CAS
Google Scholar
He YW, Wang C, Zhou L, Song H, Dow JM, Zhang LH. Dual signaling functions of the hybrid sensor kinase RpfC of Xanthomonas campestris involve either phosphorelay or receiver domain-protein interaction. J Biol Chem. 2006;281(44):33414–21.
Article
PubMed
CAS
Google Scholar
Jiang BL, He YQ, Cen WJ, Wei HY, Jiang GF, Jiang W, et al. The type III secretion effector XopXccN of Xanthomonas campestris pv. campestris is required for full virulence. Res Microbiol. 2008;159(3):216–20.
Article
PubMed
CAS
Google Scholar
An SQ, Lu GT, Su ZH, Li RF, He YQ, Jiang BL, Tang DJ, Tang JL. Systematic mutagenesis of all predicted gntR genes in Xanthomonas campestris pv. campestris reveals a GntR family transcriptional regulator controlling hypersensitive response and virulence. Mol Plant-Microbe Interact. 2011;24(9):1027–39.
Article
PubMed
CAS
Google Scholar
Castañeda A, Reddy JD, El-Yacoubi B, Gabriel DW. Mutagenesis of all eight avr genes in Xanthomonas campestris pv. campestris had no detected effect on pathogenicity, but one avr gene affected race specificity. Mol Plant-Microbe Interact. 2005;18(12):1306–17.
Article
PubMed
CAS
Google Scholar
Jefferson RA, Kavanagh TA. Bevan MW. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987;6(13):3901–7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vojnov AA, Slater H, Daniels MJ, Dow JM. Expression of the gum operon directing xanthan biosynthesis in Xanthomonas campestris and its regulation in planta. Mol Plant-Microbe Interact. 2001;14(6):768–74.
Article
PubMed
CAS
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5(7):621–8.
Article
PubMed
CAS
Google Scholar
Audic S, Claverie JM. The significance of digital gene expression profiles. Genome Res. 1997;7(10):986–95.
Article
PubMed
CAS
Google Scholar
Lepesant JA, Lepesant-Kejzlarova J, Pascal M, Kunst F, Billault A, Dedonder R. Identification of the structural gene of levansucrase in Bacillus subtilis Marburg. Mol Gen Genet. 1974;128(3):213–21.
Article
PubMed
CAS
Google Scholar
Lawes M, Maloy S. MudSacI, a transposon with strong selectable and counterselectable markers: use for rapid mapping of chromosomal mutations in Salmonella typhimurium. J Bacteriol. 1995;177(5):1383–7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pierce JC, Sauer B. Sternberg N. A positive selection vector for cloning high molecular weight DNA by the bacteriophage P1 system: improved cloning efficacy. Proc Natl Acad Sci U S A. 1992;89(6):2056–60.
Article
PubMed
PubMed Central
CAS
Google Scholar
He YQ, Zhang L, Jiang BL, Zhang ZC, Xu RQ, Tang DJ, et al. Comparative and functional genomics reveals genetic diversity and determinants of host specificity among reference strains and a large collection of Chinese isolates of the phytopathogen Xanthomonas campestris pv. campestris. Genome Biol. 2007;8(10):R218.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jiang W, Jiang BL, Xu RQ, Huang JD, Wei HY, Jiang GF, et al. Identification of six type III effector genes with the PIP box in Xanthomonas campestris pv. campestris and five of them contribute individually to full pathogenicity. Mol Plant-Microbe Interact. 2009;22(11):1401–11.
Article
PubMed
CAS
Google Scholar
Xu RQ, Blanvillain S, Feng JX, Jiang BL, Li XZ, Wei HY, et al. AvrACXcc8004, a type III effector with a leucine-rich repeat domain from Xanthomonas campestris pathovar campestris confers avirulence in vascular tissues of Arabidopsis thaliana ecotype Col-0. J Bacteriol. 2008;190(1):343–55.
Article
PubMed
CAS
Google Scholar
Williams P. Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology. 2007;153(Pt 12):3923–38.
Article
PubMed
CAS
Google Scholar
Ryan RP, Fouhy Y, Lucey JF, Dow JM. Cyclic di-GMP signaling in bacteria: recent advances and new puzzles. J Bacteriol. 2006;188(24):8327–34.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ryan RP, McCarthy Y, Andrade M, Farah CS, Armitage JP, Dow JM. Cell-cell signal-dependent dynamic interactions between HD-GYP and GGDEF domain proteins mediate virulence in Xanthomonas campestris. Proc Natl Acad Sci U S A. 2010;107(13):5989–94.
Article
PubMed
PubMed Central
Google Scholar
Tao F, He YW, Wu DH, Swarup S, Zhang LH. The cyclic nucleotide monophosphate domain of Xanthomonas campestris global regulator Clp defines a new class of cyclic di-GMP effectors. J Bacteriol. 2010;192(4):1020–9.
Article
PubMed
CAS
Google Scholar
An SQ, Febrer M, McCarthy Y, Tang DJ, Clissold L, Kaithakottil G, et al. High-resolution transcriptional analysis of the regulatory influence of cell-to-cell signalling reveals novel genes that contribute to Xanthomonas phytopathogenesis. Mol Microbiol. 2013;88(6):1058–69.
Article
PubMed
PubMed Central
CAS
Google Scholar
Guo Y, Zhang Y, Li JL, Wang N. Diffusible signal factor-mediated quorum sensing plays a central role in coordinating gene expression of Xanthomonas citri subsp. citri. Mol Plant Microbe Interact. 2012;25(2):165–79.
Article
PubMed
CAS
Google Scholar