Abdelrahman YM, Belland RJ. The chlamydial developmental cycle. FEMS Microbiol Rev. 2005;29:949–59.
Article
CAS
PubMed
Google Scholar
Mouldert JW. Interaction of chlamydiae and host cells in vitro. Microbiol Mol Biol Rev. 1991;55:143–90.
Google Scholar
Miyairi I, Mahdi OS, Ouellette SP, Belland RJ, Byrne GI. Different growth rates of Chlamydia trachomatis biovars reflect pathotype. J Infect Dis. 2006;194:350–7.
Article
PubMed
Google Scholar
Coles AM, Reynolds DJ, Harper A, Devitt A, Pearce JH. Low-nutrient induction of abnormal chlamydial development: A novel component of chlamydial pathogenesis? FEMS Microbiol Lett. 1993;106:193–200.
Article
CAS
PubMed
Google Scholar
Harper A, Pogson CI, Jones ML. Chlamydial development is adversely affected by minor changes in amino acid supply, blood plasma amino acid levels, and glucose deprivation. Infect Immun. 2000;68:1457–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beatty WL, Byrne GI, Morrisontt RP. Morphologic and antigenic characterization of interferon γ-mediated persistent Chiamydia trachomatis infection in vitro. Proc Natl Acad Sci U S A. 1993;90:3998–4002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wyrick PB. Chlamydia trachomatis persistence in vitro – An overview. J Infect Dis. 2010;201:S88–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ong VA, Marsh JW, Lawrence A, Allan JA, Timms P, Huston WM. The protease inhibitor JO146 demonstrates a critical role for CtHtrA for Chlamydia trachomatis reversion from penicillin persistence. Front Cell Infect Microbiol. 2013;3:100.
Article
PubMed
PubMed Central
Google Scholar
Chacko A, Barker CJ, Beagley KW, Hodson MP, Plan MR, Timms P, et al. Increased sensitivity to tryptophan bioavailability is a positive adaptation by the human strains of Chlamydia pneumoniae. Mol Microbiol. 2014;93:797–813.
Article
CAS
PubMed
Google Scholar
Newman L, Rowley J, Vander Hoorn S, Wijesooriya NS, Unemo M, Low N, et al. Global estimates of the prevalence and incidence of four curable sexually transmitted Infections in 2012 based on systematic review and global reporting. PLoS ONE. 2015;10:12.
Google Scholar
Hafner LM, Pelzer ES. Tubal damage, infertility and tubal ectopic pregnancy: Chlamydia trachomatis and other microbial aetiologies. Ectopic Pregnancy. 2011;1194–212. doi:10.5772/21555.
Kimani J, Maclean IW, Bwayo JJ, Macdonald K, Oyugi J, Maitha GM, et al. Risk factors for Chlamydia trachomatis pelvic inflammatory disease among sex workers in Nairobi, Kenya. J Infect Dis. 1996;173:1437–44.
Article
CAS
PubMed
Google Scholar
Hillis SD, Owens LM. Marchbanks P a, Amsterdam LF, Mac Kenzie WR. Recurrent chlamydial infections increase the risks of hospitalization for ectopic pregnancy and pelvic inflammatory disease. Am J Obstet Gynecol. 1997;176:103–7.
Article
CAS
PubMed
Google Scholar
Oakeshott P, Kerry S, Aghaizu A, Atherton H, Hay S, Taylor-robinson D, et al. Randomised controlled trial of screening for Chlamydia trachomatis to prevent pelvic inflammatory disease: the POPI (prevention of pelvic infection) trial. BMJ. 2010;340:c1642.
Article
PubMed
PubMed Central
Google Scholar
Hafner LM, Collet TA, Hickey DK. Immune regulation of Chlamydia trachomatis infections of the female genital tract. Immune Response Act. 2014;177–225. DOI: 10.5772/57542.
Menon S, Timms P, Allan JA, Alexander K, Rombauts L, Horner P, et al. Human and pathogen factors associated with Chlamydia trachomatis. Clin Microbiol Rev. 2015;28:969–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang J. Yin and yang interplay of IFN- γ in inflammation and autoimmune disease. J Clin Invest. 2007;117:9–11.
Google Scholar
Hook CE, Telyatnikova N, Goodall JC, Braud VM, Carmichael AJ, Wills MR, et al. Effects of Chlamydia trachomatis infection on the expression of natural killer (NK) cell ligands and susceptibility to NK cell lysis. Clin Exp Immunol. 2004;138:54–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
O’Meara CP, Armitage CW, Harvie MC, Andrew DW, Timms P, Lycke NY, et al. Immunity against a Chlamydia infection and disease may be determined by a balance of IL-17 signaling. Immunol Cell Biol. 2014;92:287–97.
Article
PubMed
Google Scholar
Barral R, Desai R, Zheng X, Frazer LC, Sucato GS, Haggerty CL, et al. Frequency of Chlamydia trachomatis-specific T cell interferon-γ and interleukin-17 responses in CD4-enriched peripheral blood mononuclear cells of sexually active adolescent females. J Reprod Immunol. 2014;103:29–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen W. IDO : more than an enzyme. Nat Immunol. 2011;12:809–11.
Article
CAS
PubMed
Google Scholar
Leonhardt RM, Lee S, Kavathas PB, Cresswell P. Severe tryptophan starvation blocks onset of conventional persistence and reduces reactivation of Chlamydia trachomatis. Infect Immun. 2007;75:5105–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lewis ME, Belland RJ, AbdelRahman YM, Beatty WL, Aiyar A a, Zea AH, et al. Morphologic and molecular evaluation of Chlamydia trachomatis growth in human endocervix reveals distinct growth patterns. Front Cell Infect Microbiol. 2014;4:71.
Article
PubMed
PubMed Central
Google Scholar
Aiyar A, Quayle AJ, Buckner LR, Sherchand SP, Chang TL, Zea AH, et al. Influence of the tryptophan-indole-IFNγ axis on human genital Chlamydia trachomatis infection: role of vaginal co-infections. Front Cell Infect Microbiol. 2014;4:72.
Article
PubMed
PubMed Central
Google Scholar
Belland RJ, Nelson DE, Virok D, Crane DD, Hogan D, Sturdevant D, et al. Transcriptome analysis of chlamydial growth during IFN-gamma-mediated persistence and reactivation. Proc Natl Acad Sci U S A. 2003;100:15971–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morrison RP. Differential sensitivities of Chlamydia trachomatis strains to inhibitory effects of gamma Interferon. Infect Immun. 2000;68:6038–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Caldwell HD, Wood H, Crane D, Bailey R, Jones RB, Mabey D, et al. Polymorphisms in Chlamydia trachomatis tryptophan synthase genes differentiate between genital and ocular isolates. J Clin Invest. 2003;111:1757–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nelson DE, Virok DP, Wood H, Roshick C, Johnson RM, Whitmire WM, et al. Chlamydial IFN-γ immune evasion is linked to host infection tropism. PNAS. 2005;102:10658–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wood H, Fehlner-Gardner C, Berry J, Fischer E, Graham B, Hackstadt T, et al. Regulation of tryptophan synthase gene expression in Chlamydia trachomatis. Mol Microbiol. 2003;49:1347–59.
Article
CAS
PubMed
Google Scholar
Carlson JH, Wood H, Roshick C, Caldwell HD, McClarty G. In vivo and in vitro studies of Chlamydia trachomatis TrpR:DNA interactions. Mol Microbiol. 2006;59:1678–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Darville T. Pelvic inflammatory disease: identifying research gaps-proceedings of a workshop sponsored by Department of Health and Human Services/National Institutes of Health/National Institute of Allergy and Infectious Diseases, November 3–4, 2011. Sex Transm Dis. 2013;40:761–7.
Article
PubMed
Google Scholar
Martin HL, Richardson BA, Nyange PM, Lavreys L, Hillier SL, Chohan B, et al. Vaginal lactobacilli, microbial flora, and risk of human immunodeficiency virus type 1 and sexually transmitted disease acquisition. J Infect Dis. 1999;180:1863–8.
Article
CAS
PubMed
Google Scholar
Brotman RM, Klebanoff M a, Nansel TR, Yu KF, Andrews WW, Zhang J, et al. Bacterial vaginosis assessed by gram stain and diminished colonization resistance to incident gonococcal, chlamydial, and trichomonal genital infection. J Infect Dis. 2010;202:1907–15.
Article
PubMed
PubMed Central
Google Scholar
Schwebke JR, Desmond R. A randomized trial of metronidazole in asymptomatic bacterial vaginosis to prevent the acquisition of sexually transmitted diseases. Am J Obstet Gynecol. 2007;196:517.e1–6.
Article
Google Scholar
Morrison RP. New insights into a persistent problem — chlamydial infections. J Clin Invest. 2003;11:1647–9.
Article
Google Scholar
Ziklo N, Huston WM, Hocking JS, Timms P. Chlamydia trachomatis genital tract infections: When host immune response and the microbiome collide. Trends Microbiol. 2016;24:750–65.
Article
CAS
PubMed
Google Scholar
Fehlner-Gardiner C, Roshick C, Carlson JH, Hughes S, Belland RJ, Caldwell HD, et al. Molecular basis defining human Chlamydia trachomatis tissue tropism. A possible role for tryptophan synthase. J Biol Chem. 2002;277:26893–903.
Article
CAS
PubMed
Google Scholar
Huston WM, Theodoropoulos C, Mathews S a, Timms P. Chlamydia trachomatis responds to heat shock, penicillin induced persistence, and IFN-gamma persistence by altering levels of the extracytoplasmic stress response protease HtrA. BMC Microbiol. 2008;8:190.
Article
PubMed
PubMed Central
Google Scholar
Huston WM, Swedberg JE, Harris JM, Walsh TP, Mathews SA, Timms P. The temperature activated HtrA protease from pathogen Chlamydia trachomatis acts as both a chaperone and protease at 37 C. FEBS Lett. 2007;581:3382–6.
Article
CAS
PubMed
Google Scholar
Whiley DM, Sloots TP. Comparison of three in-house multiplex PCR assays for the detection of Neisseria gonorrhoeae and Chlamydia trachomatis using real-time and conventional detection methodologies. Pathology. 2005;37:364–70.
Article
CAS
PubMed
Google Scholar
Kozlowski PA, Lynch RM, Patterson RR, Cu-Uvin S, Flanigan TP, Neutra MR. Modified wick method using weck-cel sponges for collection of human rectal secretions and analysis of mucosal HIV antibody. JAIDS. 2000;24:297–309.
CAS
PubMed
Google Scholar
Salkowski E. Ueber das Verhalten der Skatolcarbonsäure im Organismus. Zeitschrift für Physiol Chemie. 1885;9:23–33. doi:10.1515/bchm1.1885.9.1.23.
Google Scholar
Szkop M, Sikora P, Orzechowski S. A novel, simple, and sensitive colorimetric method to determine aromatic amino acid aminotransferase activity using the Salkowski reagent. Folia Microbiol. 2012;57:1–4.
Article
CAS
Google Scholar
Geisler WM, Wang C, Morrison SG, Black CM, Bandea CI, Hook EW. The natural history of untreated Chlamydia trachomatis infection in the interval between screening and returning for treatment. Sex Transm Dis. 2008;35:119–23.
Article
PubMed
Google Scholar
Geisler WM. Duration of untreated, uncomplicated Chlamydia trachomatis genital infection and factors associated with Chlamydia resolution: a review of human studies. J Infect Dis. 2010;201(Suppl):S104–13.
Article
PubMed
Google Scholar
Walker J, Tabrizi SN, Fairley CK, Chen MY, Bradshaw CS, Twin J, et al. Chlamydia trachomatis incidence and re-infection among young women--behavioural and microbiological characteristics. PLoS ONE. 2012;7:e37778.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hafner L, Beagley K, Timms P. Chlamydia trachomatis infection: host immune responses and potential vaccines. Mucosal Immunol. 2008;1:116–30.
Article
CAS
PubMed
Google Scholar
Doerflinger SY, Throop AL, Herbst-Kralovetz MM. Bacteria in the vaginal microbiome alter the innate immune response and barrier properties of the human vaginal epithelia in a species-specific manner. J Infect Dis. 2014;209:1989–99.
Article
CAS
PubMed
Google Scholar
Brotman RM. Vaginal microbiome and sexually transmitted infections: an epidemiologic perspective. J Clin Invest. 2011;121:4610–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mirmonsef P, Hotton AL, Gilbert D, Burgad D, Landay A, Weber KM, et al. Free glycogen in vaginal fluids is associated with Lactobacillus colonization and low vaginal pH. PLoS ONE. 2014;9:e102467.
Article
PubMed
PubMed Central
Google Scholar
Gong Z, Luna Y, Yu P, Fan H. Lactobacilli inactivate Chlamydia trachomatis through lactic acid but not H2O2. PLoS ONE. 2014;9:e107758.
Article
PubMed
PubMed Central
Google Scholar
Kaewsrichan J, Peeyananjarassri K, Kongprasertkit J. Selection and identification of anaerobic lactobacilli producing inhibitory compounds against vaginal pathogens. FEMS Immunol Med Microbiol. 2006;48:75–83.
Article
CAS
PubMed
Google Scholar
Aroutcheva A, Gariti D, Simon M, Shott S, Faro J, Simoes J a, et al. Defense factors of vaginal lactobacilli. Am J Obstet Gynecol. 2001;185:375–9.
Article
CAS
PubMed
Google Scholar
Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SSK, McCulle SL, et al. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci U S A. 2011;108 Suppl:4680–7.
Article
Google Scholar
Cherpes TL, Meyn L a, Krohn M a, Lurie JG, Hillier SL. Association between acquisition of herpes simplex virus type 2 in women and bacterial vaginosis. Clin Infect Dis. 2003;37:319–25.
Article
PubMed
Google Scholar
Wiesenfeld HC, Hillier SL, Krohn MA, Landers DV, Sweet RL. Bacterial vaginosis is a strong predictor of Neisseria gonorrhoeae and Chlamydia trachomatis infection. Clin Infect Dis. 2003;36:663–8.
Article
PubMed
Google Scholar