Roeder A, Kirschning CJ, Rupec RA, Schaller M, Weindl G, Korting HC: Toll-like receptors as key mediators in innate antifungal immunity. Med Mycol. 2004, 42: 485-498. 10.1080/13693780400011112.
Article
PubMed
CAS
Google Scholar
Miceli MH, Diaz JA, Lee SA: Emerging opportunistic yeast infections. Lancet Infect Dis. 2011, 11: 142-151. 10.1016/S1473-3099(10)70218-8.
Article
PubMed
Google Scholar
Ruhnke M: Epidemiology of Candida albicans infections and role of non-Candida-albicans yeasts. Curr Drug Targets. 2006, 7: 495-504. 10.2174/138945006776359421.
Article
PubMed
CAS
Google Scholar
Horn DL, Neofytos D, Anaissie EJ, Fishman JA, Steinbach WJ, Olyaei AJ, Marr KA, Pfaller MA, Chang CH, Webster KM: Epidemiology and outcomes of candidemia in 2019 patients: data from the prospective antifungal therapy alliance registry. Clin Infect Dis. 2009, 48: 1695-1703. 10.1086/599039.
Article
PubMed
CAS
Google Scholar
Vandeputte P, Ferrari S, Coste AT: Antifungal resistance and new strategies to control fungal infections. Int J Microbiol. 2012, 2012: 713687-
Article
PubMed
PubMed Central
Google Scholar
Myoken Y, Kyo T, Sugata T, Murayama SY, Mikami Y: Breakthrough fungemia caused by fluconazole-resistant Candida albicans with decreased susceptibility to voriconazole in patients with hematologic malignancies. Haematologica. 2006, 91: 287-288.
PubMed
Google Scholar
Chauhan N, Calderone R: Two-component signal transduction proteins as potential drug targets in medically important fungi. Infect Immun. 2008, 76: 4795-4803. 10.1128/IAI.00834-08.
Article
PubMed
CAS
PubMed Central
Google Scholar
Yamada-Okabe T, Mio T, Ono N, Kashima Y, Matsui M, Arisawa M, Yamada-Okabe H: Roles of three histidine kinase genes in hyphal development and virulence of the pathogenic fungus Candida albicans. J Bacteriol. 1999, 181: 7243-7247.
PubMed
CAS
PubMed Central
Google Scholar
Catlett NL, Yoder OC, Turgeon BG: Whole-genome analysis of two-component signal transduction genes in fungal pathogens. Eukaryot Cell. 2003, 2: 1151-1161. 10.1128/EC.2.6.1151-1161.2003.
Article
PubMed
CAS
PubMed Central
Google Scholar
Nemecek JC, Wuthrich M, Klein BS: Global control of dimorphism and virulence in fungi. Science. 2006, 312: 583-588. 10.1126/science.1124105.
Article
PubMed
CAS
Google Scholar
Kruppa M, Calderone R: Two-component signal transduction in human fungal pathogens. FEMS Yeast Res. 2006, 6: 149-159. 10.1111/j.1567-1364.2006.00024.x.
Article
PubMed
CAS
Google Scholar
Desai C, Mavrianos J, Chauhan N: Candida albicans SRR1, a putative two-component response regulator gene, is required for stress adaptation, morphogenesis, and virulence. Eukaryot Cell. 2011, 10: 1370-1374. 10.1128/EC.05188-11.
Article
PubMed
CAS
PubMed Central
Google Scholar
Bahn YS: Master and commander in fungal pathogens: the two-component system and the HOG signaling pathway. Eukaryot Cell. 2008, 7: 2017-2036. 10.1128/EC.00323-08.
Article
PubMed
CAS
PubMed Central
Google Scholar
Maeda T, Wurgler-Murphy SM, Saito H: A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature. 1994, 369: 242-245. 10.1038/369242a0.
Article
PubMed
CAS
Google Scholar
Appleby JL, Parkinson JS, Bourret RB: Signal transduction via the multi-step phosphorelay: not necessarily a road less traveled. Cell. 1996, 86: 845-848. 10.1016/S0092-8674(00)80158-0.
Article
PubMed
CAS
Google Scholar
Nagahashi S, Mio T, Ono N, Yamada-Okabe T, Arisawa M, Bussey H, Yamada-Okabe H: Isolation of CaSLN1 and CaNIK1, the genes for osmosensing histidine kinase homologues, from the pathogenic fungus Candida albicans. Microbiology. 1998, 144 (Pt 2): 425-432.
Article
PubMed
CAS
Google Scholar
Srikantha T, Tsai L, Daniels K, Enger L, Highley K, Soll DR: The two-component hybrid kinase regulator CaNIK1 of Candida albicans. Microbiology. 1998, 144 (Pt 10): 2715-2729.
Article
PubMed
CAS
Google Scholar
Alex LA, Korch C, Selitrennikoff CP, Simon MI: COS1, a two-component histidine kinase that is involved in hyphal development in the opportunistic pathogen Candida albicans. Proc Natl Acad Sci USA. 1998, 95: 7069-7073. 10.1073/pnas.95.12.7069.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ochiai N, Fujimura M, Motoyama T, Ichiishi A, Usami R, Horikoshi K, Yamaguchi I: Characterization of mutations in the two-component histidine kinase gene that confer fludioxonil resistance and osmotic sensitivity in the os-1 mutants of Neurospora crassa. Pest Manag Sci. 2001, 57: 437-442. 10.1002/ps.302.
Article
PubMed
CAS
Google Scholar
Ochiai N, Fujimura M, Oshima M, Motoyama T, Ichiishi A, Yamada-Okabe H, Yamaguchi I: Effects of iprodione and fludioxonil on glycerol synthesis and hyphal development in Candida albicans. Biosci Biotechnol Biochem. 2002, 66: 2209-2215. 10.1271/bbb.66.2209.
Article
PubMed
CAS
Google Scholar
Motoyama T, Kadokura K, Ohira T, Ichiishi A, Fujimura M, Yamaguchi I, Kudo T: A two-component histidine kinase of the rice blast fungus is involved in osmotic stress response and fungicide action. Fungal Genet Biol. 2005, 42: 200-212. 10.1016/j.fgb.2004.11.002.
Article
PubMed
CAS
Google Scholar
Knauth P, Reichenbach H: On the mechanism of action of the myxobacterial fungicide ambruticin. J Antibiot (Tokyo). 2000, 53: 1182-1190. 10.7164/antibiotics.53.1182.
Article
CAS
Google Scholar
Furukawa K, Randhawa A, Kaur H, Mondal AK, Hohmann S: Fungal fludioxonil sensitivity is diminished by a constitutively active form of the group III histidine kinase. FEBS Lett. 2012, 586: 2417-2422. 10.1016/j.febslet.2012.05.057.
Article
PubMed
CAS
Google Scholar
Yoshimi A, Kojima K, Takano Y, Tanaka C: Group III histidine kinase is a positive regulator of Hog1-type mitogen-activated protein kinase in filamentous fungi. Eukaryot Cell. 2005, 4: 1820-1828. 10.1128/EC.4.11.1820-1828.2005.
Article
PubMed
CAS
PubMed Central
Google Scholar
Buschart A, Gremmer K, El-Mowafy M, van den Heuvel J, Mueller PP, Bilitewski U: A novel functional assay for fungal histidine kinases group III reveals the role of HAMP domains for fungicide sensitivity. J Biotechnol. 2012, 157: 268-277. 10.1016/j.jbiotec.2011.09.017.
Article
PubMed
CAS
Google Scholar
Motoyama T, Ohira T, Kadokura K, Ichiishi A, Fujimura M, Yamaguchi I, Kudo T: An Os-1 family histidine kinase from a filamentous fungus confers fungicide-sensitivity to yeast. Curr Genet. 2005, 47: 298-306. 10.1007/s00294-005-0572-6.
Article
PubMed
CAS
Google Scholar
Vetcher L, Menzella HG, Kudo T, Motoyama T, Katz L: The antifungal polyketide ambruticin targets the HOG pathway. Antimicrob Agents Chemother. 2007, 51: 3734-3736. 10.1128/AAC.00369-07.
Article
PubMed
CAS
PubMed Central
Google Scholar
Dongo A, Bataille-Simoneau N, Campion C, Guillemette T, Hamon B, Iacomi-Vasilescu B, Katz L, Simoneau P: The group III two-component histidine kinase of filamentous fungi is involved in the fungicidal activity of the bacterial polyketide ambruticin. Appl Environ Microbiol. 2009, 75: 127-134. 10.1128/AEM.00993-08.
Article
PubMed
CAS
PubMed Central
Google Scholar
Tao W, Malone CL, Ault AD, Deschenes RJ, Fassler JS: A cytoplasmic coiled-coil domain is required for histidine kinase activity of the yeast osmosensor, SLN1. Mol Microbiol. 2002, 43: 459-473. 10.1046/j.1365-2958.2002.02757.x.
Article
PubMed
CAS
PubMed Central
Google Scholar
Dutta R, Inouye M: Reverse phosphotransfer from OmpR to EnvZ in a kinase-/phosphatase + mutant of EnvZ (EnvZ.N347D), a bifunctional signal transducer of Escherichia coli. J Biol Chem. 1996, 271: 1424-1429. 10.1074/jbc.271.3.1424.
Article
PubMed
CAS
Google Scholar
Aravind L, Ponting CP: The cytoplasmic helical linker domain of receptor histidine kinase and methyl-accepting proteins is common to many prokaryotic signalling proteins. FEMS Microbiol Lett. 1999, 176: 111-116. 10.1111/j.1574-6968.1999.tb13650.x.
Article
PubMed
CAS
Google Scholar
Dunin-Horkawicz S, Lupas AN: Comprehensive analysis of HAMP domains: implications for transmembrane signal transduction. J Mol Biol. 2010, 397: 1156-1174. 10.1016/j.jmb.2010.02.031.
Article
PubMed
CAS
Google Scholar
Airola MV, Watts KJ, Bilwes AM, Crane BR: Structure of concatenated HAMP domains provides a mechanism for signal transduction. Structure. 2010, 18: 436-448. 10.1016/j.str.2010.01.013.
Article
PubMed
CAS
PubMed Central
Google Scholar
Appleman JA, Stewart V: Mutational analysis of a conserved signal-transducing element: the HAMP linker of the Escherichia coli nitrate sensor NarX. J Bacteriol. 2003, 185: 89-97. 10.1128/JB.185.1.89-97.2003.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hulko M, Berndt F, Gruber M, Linder JU, Truffault V, Schultz A, Martin J, Schultz JE, Lupas AN, Coles M: The HAMP domain structure implies helix rotation in transmembrane signaling. Cell. 2006, 126: 929-940. 10.1016/j.cell.2006.06.058.
Article
PubMed
CAS
Google Scholar
Swain KE, Falke JJ: Structure of the conserved HAMP domain in an intact, membrane-bound chemoreceptor: a disulfide mapping study. Biochemistry. 2007, 46: 13684-13695. 10.1021/bi701832b.
Article
PubMed
CAS
PubMed Central
Google Scholar
Meena N, Kaur H, Mondal AK: Interactions among HAMP domain repeats act as an osmosensing molecular switch in group III hybrid histidine kinases from fungi. J Biol Chem. 2010, 285: 12121-12132. 10.1074/jbc.M109.075721.
Article
PubMed
CAS
PubMed Central
Google Scholar
Guarente L, Mason T: Heme regulates transcription of the CYC1 gene of S. cerevisiae via an upstream activation site. Cell. 1983, 32: 1279-1286. 10.1016/0092-8674(83)90309-4.
Article
PubMed
CAS
Google Scholar
Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD: Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast. 1998, 14: 115-132. 10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2.
Article
PubMed
CAS
Google Scholar
Amberg DC, Burke D, Strathern JN: Methods in Yeast Genetics: A Cold Spring Harbor Laboratory Manual. 2005, NY: Cold Spring Harbor Laboratory Press
Google Scholar
Hofle G, Steinmetz H, Gerth K, Reichenbach H: Antibiotics from gliding bacteria, XLIV. Ambruticins VS: New members of the antifungal ambruticin family from Sorangium cellulosum. Liebigs Ann Chem. 1991, 1991: 941-945. 10.1002/jlac.1991199101161.
Article
Google Scholar
Gustin MC, Albertyn J, Alexander M, Davenport K: MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 1998, 62: 1264-1300.
PubMed
CAS
PubMed Central
Google Scholar
Panadero J, Pallotti C, Rodriguez-Vargas S, Randez-Gil F, Prieto JA: A downshift in temperature activates the high osmolarity glycerol (HOG) pathway, which determines freeze tolerance in Saccharomyces cerevisiae. J Biol Chem. 2006, 281: 4638-4645.
Article
PubMed
CAS
Google Scholar
Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC: Measurement of protein using bicinchoninic acid. Anal Biochem. 1985, 150: 76-85. 10.1016/0003-2697(85)90442-7.
Article
PubMed
CAS
Google Scholar
Wurgler-Murphy SM, Maeda T, Witten EA, Saito H: Regulation of the Saccharomyces cerevisiae HOG1 mitogen-activated protein kinase by the PTP2 and PTP3 protein tyrosine phosphatases. Mol Cell Biol. 1997, 17: 1289-1297.
Article
PubMed
CAS
PubMed Central
Google Scholar
Posas F, Wurgler-Murphy SM, Maeda T, Witten EA, Thai TC, Saito H: Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 "two-component" osmosensor. Cell. 1996, 86: 865-875. 10.1016/S0092-8674(00)80162-2.
Article
PubMed
CAS
Google Scholar
Posas F, Saito H: Activation of the yeast SSK2 MAP kinase kinase kinase by the SSK1 two-component response regulator. EMBO J. 1998, 17: 1385-1394. 10.1093/emboj/17.5.1385.
Article
PubMed
CAS
PubMed Central
Google Scholar
Horie T, Tatebayashi K, Yamada R, Saito H: Phosphorylated Ssk1 prevents unphosphorylated Ssk1 from activating the Ssk2 mitogen-activated protein kinase kinase kinase in the yeast high-osmolarity glycerol osmoregulatory pathway. Mol Cell Biol. 2008, 28: 5172-5183. 10.1128/MCB.00589-08.
Article
PubMed
CAS
PubMed Central
Google Scholar
Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke JD, Bussey H: Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science. 1999, 285: 901-906. 10.1126/science.285.5429.901.
Article
PubMed
CAS
Google Scholar