Harwood CS, Parales RE: The beta-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol. 1996, 50: 553-590. 10.1146/annurev.micro.50.1.553.
Article
CAS
PubMed
Google Scholar
Jimenez JI, Minambres B, Garcia JL, Diaz E: Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440. Environ Microbiol. 2002, 4 (12): 824-841. 10.1046/j.1462-2920.2002.00370.x.
Article
CAS
PubMed
Google Scholar
MacLean AM, MacPherson G, Aneja P, Finan TM: Characterization of the beta-ketoadipate pathway in Sinorhizobium meliloti. Appl Environ Microbiol. 2006, 72 (8): 5403-5413. 10.1128/AEM.00580-06.
Article
PubMed Central
CAS
PubMed
Google Scholar
Barbe V, Vallenet D, Fonknechten N, Kreimeyer A, Oztas S, Labarre L, Cruveiller S, Robert C, Duprat S, Wincker P, Ornston LN, Weissenbach J, Marlière P, Cohen GN, Médigue C: Unique features revealed by the genome sequence of Acinetobacter sp. ADP1, a versatile and naturally transformation competent bacterium. Nucleic Acids Res. 2004, 32 (19): 5766-5779. 10.1093/nar/gkh910.
Article
PubMed Central
CAS
PubMed
Google Scholar
Butler JE, He Q, Nevin KP, He Z, Zhou J, Lovley DR: Genomic and microarray analysis of aromatics degradation in Geobacter metallireducens and comparison to a Geobacter isolate from a contaminated field site. BMC genomics. 2007, 8: 180-10.1186/1471-2164-8-180.
Article
PubMed Central
PubMed
Google Scholar
Salinero KK, Keller K, Feil WS, Feil H, Trong S, Di Bartolo G, Lapidus A: Metabolic analysis of the soil microbe Dechloromonas aromatica str. RCB: indications of a surprisingly complex life-style and cryptic anaerobic pathways for aromatic degradation. BMC genomics. 2009, 10: 351-10.1186/1471-2164-10-351.
Article
PubMed Central
PubMed
Google Scholar
Wu CH, Ornston MK, Ornston LN: Genetic control of enzyme induction in the β-ketoadipate pathway of Pseudomonas putida: two-point crosses with a regulatory mutant strain. J Bacteriol. 1972, 109 (2): 796-802.
PubMed Central
CAS
PubMed
Google Scholar
Houghton JE, Brown TM, Appel AJ, Hughes EJ, Ornston LN: Discontinuities in the evolution of Pseudomonas putida cat genes. J Bacteriol. 1995, 177 (2): 401-412.
PubMed Central
CAS
PubMed
Google Scholar
Cowles CE, Nichols NN, Harwood CS: BenR, a XylS homologue, regulates three different pathways of aromatic acid degradation in Pseudomonas putida. J Bacteriol. 2000, 182 (22): 6339-6346. 10.1128/JB.182.22.6339-6346.2000.
Article
PubMed Central
CAS
PubMed
Google Scholar
Collier LS, Gaines GL, Neidle EL: Regulation of benzoate degradation in Acinetobacter sp. strain ADP1 by BenM, a LysR-type transcriptional activator. J Bacteriol. 1998, 180 (9): 2493-2501.
PubMed Central
CAS
PubMed
Google Scholar
Gerischer U: Specific and global regulation of genes associated with the degradation of aromatic compounds in bacteria. J Mol Microbiol Biotechnol. 2002, 4 (2): 111-121.
CAS
PubMed
Google Scholar
Tropel D, Meer van der JR: Bacterial transcriptional regulators for degradation pathways of aromatic compounds. Microbiol Mol Biol Rev. 2004, 68 (3): 474-500. 10.1128/MMBR.68.3.474-500.2004.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rothmel RK, Shinabarger DL, Parsek MR, Aldrich TL, Chakrabarty AM: Functional analysis of the Pseudomonas putida regulatory protein CatR: transcriptional studies and determination of the CatR DNA-binding site by hydroxyl-radical footprinting. J Bacteriol. 1991, 173 (15): 4717-4724.
PubMed Central
CAS
PubMed
Google Scholar
Shingler V: Integrated regulation in response to aromatic compounds: from signal sensing to attractive behaviour. Environ Microbiol. 2003, 5 (12): 1226-1241. 10.1111/j.1462-2920.2003.00472.x.
Article
CAS
PubMed
Google Scholar
Stulke J, Hillen W: Carbon catabolite repression in bacteria. Curr Opin Microbiol. 1999, 2 (2): 195-201. 10.1016/S1369-5274(99)80034-4.
Article
CAS
PubMed
Google Scholar
Moreno R, Rojo F: The target for the Pseudomonas putida Crc global regulator in the benzoate degradation pathway is the BenR transcriptional regulator. J Bacteriol. 2008, 190 (5): 1539-1545. 10.1128/JB.01604-07.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zimmermann T, Sorg T, Siehler SY, Gerischer U: Role of Acinetobacter baylyi Crc in catabolite repression of enzymes for aromatic compound catabolism. J Bacteriol. 2009, 191 (8): 2834-2842. 10.1128/JB.00817-08.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lalucat J, Bennasar A, Bosch R, Garcia-Valdes E, Palleroni NJ: Biology of Pseudomonas stutzeri. Microbiol Mol Biol Rev. 2006, 70 (2): 510-547. 10.1128/MMBR.00047-05.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jimenez JI, Nogales J, Garcia JL, Diaz E: A genomic view of the catabolism of aromatic compounds in Pseudomonas. Handbook of Hydrocarbon and Lipid Microbiology. Edited by: Timmis KN. 2010, Berlin Heidelberg: Springer-Verlag Press, 1297-1325. full_text.
Chapter
Google Scholar
Yan Y, Yang J, Dou Y, Chen M, Ping S, Peng J, Lu W, Zhang W, Yao Z, Li H, Liu W, He S, Geng L, Zhang X, Yang F, Yu H, Zhan Y, Li D, Lin Z, Wang Y, Elmerich C, Lin M, Jin Q: Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501. Proc Natl Acad Sci USA. 2008, 105 (21): 7564-7569. 10.1073/pnas.0801093105.
Article
PubMed Central
CAS
PubMed
Google Scholar
Vodovar N, Vallenet D, Cruveiller S, Rouy Z, Barbe V, Acosta C, Cattolico L, Jubin C, Lajus A, Segurens B, Vacherie B, Wincker P, Weissenbach J, Lemaitre B, Médigue C, Boccard F: Complete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila. Nat Biotechnol. 2006, 24 (6): 673-679. 10.1038/nbt1212.
Article
CAS
PubMed
Google Scholar
Qiu Y ZS, Mo X, You C, Wang D: Investigation of dinitrogen fixation bacteria isolated from rice rhizosphere. Chinese Sc bull (kexuetongbao). 1981, 383-384. 26
Vermeiren H, Willems A, Schoofs G, de Mot R, Keijers V, Hai W, Vanderleyden J: The rice inoculant strain Alcaligenes faecalis A15 is a nitrogen-fixing Pseudomonas stutzeri. Syst Appl Microbiol. 1999, 22 (2): 215-224.
Article
CAS
PubMed
Google Scholar
Rediers H, Bonnecarrere V, Rainey PB, Hamonts K, Vanderleyden J, De Mot R: Development and application of a dapB-based in vivo expression technology system to study colonization of rice by the endophytic nitrogen-fixing bacterium Pseudomonas stutzeri A15. Appl Environ Microbiol. 2003, 69 (11): 6864-6874. 10.1128/AEM.69.11.6864-6874.2003.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rothmel RK, Aldrich TL, Houghton JE, Coco WM, Ornston LN, Chakrabarty AM: Nucleotide sequencing and characterization of Pseudomonas putida catR: a positive regulator of the catBC operon is a member of the LysR family. J Bacteriol. 1990, 172 (2): 922-931.
PubMed Central
CAS
PubMed
Google Scholar
Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock RE, Lory S, Olson MV: Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature. 2000, 406 (6799): 959-964. 10.1038/35023079.
Article
CAS
PubMed
Google Scholar
Paulsen IT, Press CM, Ravel J, Kobayashi DY, Myers GS, Mavrodi DV, DeBoy RT, Seshadri R, Ren Q, Madupu R, Dodson RJ, Durkin AS, Brinkac LM, Daugherty SC, Sullivan SA, Rosovitz MJ, Gwinn ML, Zhou L, Schneider DJ, Cartinhour SW, Nelson WC, Weidman J, Watkins K, Tran K, Khouri H, Pierson EA, Pierson LS, Thomashow LS, Loper JE: Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat Biotechnol. 2005, 23 (7): 873-878. 10.1038/nbt1110.
Article
CAS
PubMed
Google Scholar
Romero-Steiner S, Parales RE, Harwood CS, Houghton JE: Characterization of the pcaR regulatory gene from Pseudomonas putida, which is required for the complete degradation of p-hydroxybenzoate. J Bacteriol. 1994, 176 (18): 5771-5779.
PubMed Central
CAS
PubMed
Google Scholar
Guo Z, Houghton JE: PcaR-mediated activation andrepression of pca genes from Pseudomonas putida are propagated by its binding to both the -35 and the -10 promoter elements. Mol Microbiol. 1999, 32 (2): 253-263. 10.1046/j.1365-2958.1999.01342.x.
Article
CAS
PubMed
Google Scholar
Harwood CS, Nichols NN, Kim MK, Ditty JL, Parales RE: Identification of the pcaRKF gene cluster from Pseudomonas putida: involvement in chemotaxis, biodegradation, and transport of 4-hydroxybenzoate. J Bacteriol. 1994, 176 (21): 6479-6488.
PubMed Central
CAS
PubMed
Google Scholar
Retallack DM, Thomas TC, Shao Y, Haney KL, Resnick SM, Lee VD, Squires CH: Identification of anthranilate and benzoate metabolic operons of Pseudomonas fluorescens and functional characterization of their promoter regions. Microb Cell Fact. 2006, 5: 1-10.1186/1475-2859-5-1.
Article
PubMed Central
PubMed
Google Scholar
Parsek MR, Shinabarger DL, Rothmel RK, Chakrabarty AM: Roles of CatR and cis,cis-muconate in activation of the catBC operon, which is involved in benzoate degradation in Pseudomonas putida. J Bacteriol. 1992, 174 (23): 7798-7806.
PubMed Central
CAS
PubMed
Google Scholar
Aldrich TL, Chakrabarty AM: Transcriptional regulation, nucleotide sequence, and localization of the promoter of the catBC operon in Pseudomonas putida. J Bacteriol. 1988, 170 (3): 1297-1304.
PubMed Central
CAS
PubMed
Google Scholar
Fischer R, Bleichrodt FS, Gerischer UC: Aromatic degradative pathways in Acinetobacter baylyi underlie carbon catabolite repression. Microbiology. 2008, 154 (10): 3095-3103. 10.1099/mic.0.2008/016907-0.
Article
CAS
PubMed
Google Scholar
Morales G, Linares JF, Beloso A, Albar JP, Martinez JL, Rojo F: The Pseudomonas putida Crc global regulator controls the expression of genes from several chromosomal catabolic pathways for aromatic compounds. J Bacteriol. 2004, 186 (5): 1337-1344. 10.1128/JB.186.5.1337-1344.2004.
Article
PubMed Central
CAS
PubMed
Google Scholar
Park SH, Oh KH, Kim CK: Adaptive and cross-protective responses of Pseudomonas sp. DJ-12 to several aromatics and other stress shocks. Curr Microbiol. 2001, 43 (3): 176-181. 10.1007/s002840010283.
Article
CAS
PubMed
Google Scholar
Top EM, Springael D: The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds. Curr Opin Biotechnol. 2003, 14 (3): 262-269. 10.1016/S0958-1669(03)00066-1.
Article
CAS
PubMed
Google Scholar
Dobrindt U, Hochhut B, Hentschel U, Hacker J: Genomic islands in pathogenic and environmental microorganisms. Nat Rev Microbiol. 2004, 2 (5): 414-424. 10.1038/nrmicro884.
Article
CAS
PubMed
Google Scholar
Ezezika OC, Collier-Hyams LS, Dale HA, Burk AC, Neidle EL: CatM regulation of the benABCDE operon: functional divergence of two LysR-type paralogs in Acinetobacter baylyi ADP1. Appl Environ Microbiol. 2006, 72 (3): 1749-1758. 10.1128/AEM.72.3.1749-1758.2006.
Article
PubMed Central
CAS
PubMed
Google Scholar
de Lorenzo V, Perez-Martin J: Regulatory noise in prokaryotic promoters: how bacteria learn to respond to novel environmental signals. Mol Microbiol. 1996, 19 (6): 1177-1184. 10.1111/j.1365-2958.1996.tb02463.x.
Article
CAS
PubMed
Google Scholar
Wong CM, Dilworth MJ, Glenn AR: Evidence for two uptake systems in Rhizobium leguminosarum for hydroxyaromatic compounds metabolized by the 3-oxoadipate pathway. Arch Microbiol. 1991, 156 (5): 385-391. 10.1007/BF00248715.
Article
CAS
Google Scholar
Nichols NN, Harwood CS: Repression of 4-hydroxybenzoate transport and degradation by benzoate: a new layer of regulatory control in the Pseudomonas putida beta-ketoadipate pathway. J Bacteriol. 1995, 177 (24): 7033-7040.
PubMed Central
CAS
PubMed
Google Scholar
Xie Z, Dou Y, Ping S, Chen M, Wang G, Elmerich C, Lin M: Interaction between NifL and NifA in the nitrogen-fixing Pseudomonas stutzeri A1501. Microbiology. 2006, 152 (Pt 12): 3535-3542. 10.1099/mic.0.29171-0.
Article
CAS
PubMed
Google Scholar
Windgassen M, Urban A, Jaeger KE: Rapid gene inactivation in Pseudomonas aeruginosa. FEMS Microbiol Lett. 2000, 193 (2): 201-205. 10.1111/j.1574-6968.2000.tb09424.x.
Article
CAS
PubMed
Google Scholar
Schafer A, Tauch A, Jager W, Kalinowski J, Thierbach G, Puhler A: Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene. 1994, 145 (1): 69-73. 10.1016/0378-1119(94)90324-7.
Article
CAS
PubMed
Google Scholar
Figurski DH, Helinski DR: Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci USA. 1979, 76 (4): 1648-1652. 10.1073/pnas.76.4.1648.
Article
PubMed Central
CAS
PubMed
Google Scholar
Staskawicz B, Dahlbeck D, Keen N, Napoli C: Molecular characterization of cloned avirulence genes from race 0 and race 1 of Pseudomonas syringae pv. glycinea. J Bacteriol. 1987, 169 (12): 5789-5794.
PubMed Central
CAS
PubMed
Google Scholar
Pfaffl MW: A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001, 29 (9): e45-10.1093/nar/29.9.e45.
Article
PubMed Central
CAS
PubMed
Google Scholar