Katouli M. Population structure of gut Escherichia coli and its role in development of extra-intestinal infections. Iranian journal of microbiology. 2010;2(2):59-72.
Google Scholar
Ewers C, Janßen T, Wieler LH. Avian pathogenic Escherichia coli (APEC). Berl Munch Tierarztl Wochenschr. 2003;116(9–10):381–95.
CAS
Google Scholar
Guabiraba R, Schouler C. Avian colibacillosis: still many black holes. FEMS microbiology letters. 2015;362(15):fnv118.
Article
Google Scholar
Mellata M. Human and avian extraintestinal pathogenic Escherichia coli: infections, zoonotic risks, and antibiotic resistance trends. Foodborne Pathog Dis. 2013;10(11):916–32.
Article
Google Scholar
Kabir S. Avian colibacillosis and salmonellosis: a closer look at epidemiology, pathogenesis, diagnosis, control and public health concerns. Int J Environ Res Public Health. 2010;7(1):89–114.
Article
Google Scholar
Nolan LK, Vaillancourt J-P, Barbieri NL, Logue CM. Colibacillosis. In: Diseases of poultry. Wiley; 2020;1:770–830.
Landman W, Van Eck J. The incidence and economic impact of the Escherichia coli peritonitis syndrome in Dutch poultry farming. Avian Pathol. 2015;44(5):370–8.
Article
CAS
Google Scholar
Wibisono FJ, Sumiarto B, Kusumastuti TA. Economic losses estimation of pathogenic Escherichia coli infection in Indonesian Poultry Farming. Buletin Peternakan. 2018;42(4):341–6.
Article
Google Scholar
Naundrup Thøfner IC, Poulsen LL, Bisgaard M, Christensen H, Olsen RH, Christensen JP. Longitudinal study on causes of mortality in Danish broiler breeders. Avian Dis. 2019;63(3):400–10.
Article
Google Scholar
Pitout J. Extraintestinal pathogenic Escherichia coli: a combination of virulence with antibiotic resistance. Front Microbiol. 2012;3:9.
Article
Google Scholar
Kunert Filho H, Brito K, Cavalli L, Brito B. Avian Pathogenic Escherichia coli (APEC)-an update on the control. The battle against microbial pathogens: basic science, technological advances and educational programs, A Méndez-Vilas Ed. 2015;1:598–618.
Ørskov F, Ørskov I. Escherichia coli serotyping and disease in man and animals. Can J Microbiol. 1992;38(7):699–704.
Article
Google Scholar
Delannoy S, Beutin L, Mariani-Kurkdjian P, Fleiss A, Bonacorsi S, Fach P. The Escherichia coli serogroup O1 and O2 lipopolysaccharides are encoded by multiple O-antigen gene clusters. Front Cell Infect Microbiol. 2017;7:30.
Article
Google Scholar
Kathayat D, Lokesh D, Ranjit S, Rajashekara G. Avian pathogenic Escherichia coli (APEC): an overview of virulence and pathogenesis factors, zoonotic potential, and control strategies. Pathogens. 2021;10(4):467.
Article
CAS
Google Scholar
Mehat JW, van Vliet AH, La Ragione RM. The Avian Pathogenic Escherichia coli (APEC) pathotype is comprised of multiple distinct, independent genotypes. Avian Pathol. 2021;50(5):402–16.
Article
CAS
Google Scholar
Dobrindt U, Hochhut B, Hentschel U, Hacker J. Genomic islands in pathogenic and environmental microorganisms. Nat Rev Microbiol. 2004;2(5):414–24.
Article
CAS
Google Scholar
Ochman H, Lawrence JG, Groisman EA. Lateral gene transfer and the nature of bacterial innovation. Nature. 2000;405(6784):299–304.
Schmidt H, Hensel M. Pathogenicity islands in bacterial pathogenesis. Clin Microbiol Rev. 2004;17(1):14–56.
Article
CAS
Google Scholar
Juhas M, Van Der Meer JR, Gaillard M, Harding RM, Hood DW, Crook DW. Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol Rev. 2009;33(2):376–93.
Article
CAS
Google Scholar
Gal-Mor O, Finlay BB. Pathogenicity islands: a molecular toolbox for bacterial virulence. Cell Microbiol. 2006;8(11):1707–19.
Article
CAS
Google Scholar
Dziva F, Stevens MP. Colibacillosis in poultry: unravelling the molecular basis of virulence of avian pathogenic Escherichia coli in their natural hosts. Avian Pathol. 2008;37(4):355–66.
Article
CAS
Google Scholar
Mellata M, Dho-Moulin M, Dozois CM, Curtiss R III, Brown PK, Arné P, et al. Role of virulence factors in resistance of avian pathogenic Escherichia coli to serum and in pathogenicity. Infect Immun. 2003;71(1):536–40.
Article
CAS
Google Scholar
Collingwood C, Kemmett K, Williams N, Wigley P. Is the concept of avian pathogenic Escherichia coli as a single pathotype fundamentally flawed? Frontiers in veterinary science. 2014;1:5.
Article
Google Scholar
Neal-McKinney JM, Liu KC, Lock CM, Wu W-H, Hu J. Comparison of MiSeq, MinION, and hybrid genome sequencing for analysis of Campylobacter jejuni. Sci Rep. 2021;11(1):1–10.
Article
Google Scholar
Lindberg MR, Schmedes SE, Hewitt FC, Haas JL, Ternus KL, Kadavy DR, et al. A comparison and integration of MiSeq and MinION platforms for sequencing single source and mixed mitochondrial genomes. PLoS ONE. 2016;11(12):e0167600.
Article
Google Scholar
Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol. 2017;13(6):e1005595.
Article
Google Scholar
Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol. 2019;37(5):540–6.
Article
CAS
Google Scholar
Wick RR, Judd LM, Cerdeira LT, Hawkey J, Méric G, Vezina B, et al. Trycycler: consensus long-read assemblies for bacterial genomes. Genome Biol. 2021;22(1):1–17.
Article
Google Scholar
Bertani G. Studies on lysogenesis I: the mode of phage liberation by lysogenic Escherichia coli. J Bacteriol. 1951;62(3):293–300.
Article
CAS
Google Scholar
Andrews S: FastQC: a quality control tool for high throughput sequence data. In.: Babraham Bioinformatics, Babraham Institute, Cambridge, United Kingdom; 2010.
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20.
Article
CAS
Google Scholar
Lee JY, Kong M, Oh J, Lim J, Chung SH, Kim J-M, et al. Comparative evaluation of Nanopore polishing tools for microbial genome assembly and polishing strategies for downstream analysis. Sci Rep. 2021;11(1):1–11.
Google Scholar
Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068–9.
Article
CAS
Google Scholar
Jolley KA, Bray JE, Maiden MC. Open-access bacterial population genomics: BIGSdb software, the PubMLST. org website and their applications. Wellcome open research. 2018;3(124):1-20.
Zuo G, Hao B. CVTree3 web server for whole-genome-based and alignment-free prokaryotic phylogeny and taxonomy. Genomics Proteomics Bioinformatics. 2015;13(5):321–31.
Article
Google Scholar
Felsenstein J. PHYLIP (phylogeny inference package), version 3.2. Cladistics. 1989;5:164-6.
Yu G, Smith DK, Zhu H, Guan Y, Lam TTY. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol. 2017;8(1):28–36.
Article
Google Scholar
Beghain J, Bridier-Nahmias A, Le Nagard H, Denamur E, Clermont O. ClermonTyping: an easy-to-use and accurate in silico method for Escherichia genus strain phylotyping. Microbial genomics. 2018;4(7):e000192.
Article
Google Scholar
Joensen KG, Tetzschner AM, Iguchi A, Aarestrup FM, Scheutz F. Rapid and easy in silico serotyping of Escherichia coli isolates by use of whole-genome sequencing data. J Clin Microbiol. 2015;53(8):2410–26.
Article
CAS
Google Scholar
Bertelli C, Laird MR, Williams KP, Group SFURC, Lau BY, Hoad G, et al. IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic acids research. 2017;45(W1):W30–5.
Article
CAS
Google Scholar
Liu B, Zheng D, Jin Q, Chen L, Yang J. VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res. 2019;47(D1):D687–92.
Article
CAS
Google Scholar
Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P, Tsang KK, et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2016;45(D1):D556-73.
Lemos M, Balado M. Iron uptake mechanisms as key virulence factors in bacterial fish pathogens. J Appl Microbiol. 2020;129(1):104–15.
Article
CAS
Google Scholar
Mey AR, Gomez-Garzon C, Payne SM. Iron Transport and Metabolism in Escherichia, Shigella, and Salmonella. EcoSal Plus. 2021;9(2):eESP00342020. https://doi.org/10.1128/ecosalplus.ESP-0034-2020.
Article
Google Scholar
Sabri M, Leveille S, Dozois CM. A SitABCD homologue from an avian pathogenic Escherichia coli strain mediates transport of iron and manganese and resistance to hydrogen peroxide. Microbiology (Reading). 2006;152(Pt 3):745–58. https://doi.org/10.1099/mic.0.28682-0.
Article
CAS
Google Scholar
Russo TA, Carlino UB, Johnson JR. Identification of a new iron-regulated virulence gene, ireA, in an extraintestinal pathogenic isolate of Escherichia coli. Infect Immun. 2001;69(10):6209–16. https://doi.org/10.1128/IAI.69.10.6209-6216.2001.
Article
CAS
Google Scholar
Garenaux A, Caza M, Dozois CM. The Ins and Outs of siderophore mediated iron uptake by extra-intestinal pathogenic Escherichia coli. Vet Microbiol. 2011;153(1–2):89–98. https://doi.org/10.1016/j.vetmic.2011.05.023.
Article
CAS
Google Scholar
Tóth I, Nougayrède J-P, Dobrindt U, Ledger TN, Boury M, Morabito S, et al. Cytolethal distending toxin type I and type IV genes are framed with lambdoid prophage genes in extraintestinal pathogenic Escherichia coli. Infect Immun. 2009;77(1):492–500.
Article
Google Scholar
Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol. 2005;187(18):6258–64.
Article
CAS
Google Scholar
Schouler C, Schaeffer B, Brée A, Mora A, Dahbi G, Biet F, et al. Diagnostic strategy for identifying avian pathogenic Escherichia coli based on four patterns of virulence genes. J Clin Microbiol. 2012;50(5):1673–8.
Article
Google Scholar
Mageiros L, Méric G, Bayliss SC, Pensar J, Pascoe B, Mourkas E, et al. Genome evolution and the emergence of pathogenicity in avian Escherichia coli. Nat Commun. 2021;12(1):1–13.
Google Scholar
Papouskova A, Masarikova M, Valcek A, Senk D, Cejkova D, Jahodarova E, et al. Genomic analysis of Escherichia coli strains isolated from diseased chicken in the Czech Republic. BMC Vet Res. 2020;16(1):1–10.
Article
Google Scholar
Johnson JR, Murray AC, Gajewski A, Sullivan M, Snippes P, Kuskowski MA, et al. Isolation and molecular characterization of nalidixic acid-resistant extraintestinal pathogenic Escherichia coli from retail chicken products. Antimicrob Agents Chemother. 2003;47(7):2161–8.
Article
CAS
Google Scholar
Bonnet C, Diarrassouba F, Brousseau R, Masson L, Topp E, Diarra MS. Pathotype and antibiotic resistance gene distributions of Escherichia coli isolates from broiler chickens raised on antimicrobial-supplemented diets. Appl Environ Microbiol. 2009;75(22):6955–62.
Article
CAS
Google Scholar
Mitchell NM, Johnson JR, Johnston B, Curtiss R III, Mellata M. Zoonotic potential of Escherichia coli isolates from retail chicken meat products and eggs. Appl Environ Microbiol. 2015;81(3):1177–87.
Article
CAS
Google Scholar
Moon H. Colonization factor antigens of enterotoxigenic Escherichia coli in animals. Curr Top Microbiol Immunol. 1990;151:147–65.
CAS
Google Scholar
Arp L, Jensen A. Piliation, hemagglutination, motility, and generation time of Escherichia coli that are virulent or avirulent for turkeys. Avian Diseases. 1980;24(1):153–61.
Kline KA, Fälker S, Dahlberg S, Normark S, Henriques-Normark B. Bacterial adhesins in host-microbe interactions. Cell Host Microbe. 2009;5(6):580–92.
Article
CAS
Google Scholar
Pourbakhsh SA, Dho-Moulin M, Brée A, Desautels C, Martineau-Doize B, Fairbrother JM. Localization of thein vivoexpression of P and F1 fimbriae in chickens experimentally inoculated with pathogenicEscherichia coli. Microb Pathog. 1997;22(6):331–41.
Article
CAS
Google Scholar
Avalos Vizcarra I, Hosseini V, Kollmannsberger P, Meier S, Weber SS, Arnoldini M, et al. How type 1 fimbriae help Escherichia coli to evade extracellular antibiotics. Sci Rep. 2016;6(1):1–13.
Article
Google Scholar
Anderson GG, Palermo JJ, Schilling JD, Roth R, Heuser J, Hultgren SJ. Intracellular bacterial biofilm-like pods in urinary tract infections. Science. 2003;301(5629):105–7.
Article
CAS
Google Scholar
Hultgren SJ, Porter TN, Schaeffer AJ, Duncan JL. Role of type 1 pili and effects of phase variation on lower urinary tract infections produced by Escherichia coli. Infect Immun. 1985;50(2):370–7.
Article
CAS
Google Scholar
Connell I, Agace W, Klemm P, Schembri M, Mărild S, Svanborg C. Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. Proc Natl Acad Sci. 1996;93(18):9827–32.
Article
CAS
Google Scholar
Foxman B, Zhang L, Tallman P, Palin K, Rode C, Bloch C, et al. Virulence characteristics of Escherichia coli causing first urinary tract infection predict risk of second infection. J Infect Dis. 1995;172(6):1536–41.
Article
CAS
Google Scholar
Dozois CM, Chanteloup N, Dho-Moulin M, Brée A, Desautels C, Fairbrother JM. Bacterial colonization and in vivo expression of F1 (type 1) fimbrial antigens in chickens experimentally infected with pathogenic Escherichia coli. Avian diseases. 1994:231–9.
Garnett JA, Martínez-Santos VI, Saldaña Z, Pape T, Hawthorne W, Chan J, et al. Structural insights into the biogenesis and biofilm formation by the Escherichia coli common pilus. Proc Natl Acad Sci. 2012;109(10):3950–5.
Article
CAS
Google Scholar
Pouttu R, Westerlund-Wikström B, Lång H, Alsti K, Virkola R, Saarela U, et al. matB, a common fimbrillin gene of Escherichia coli, expressed in a genetically conserved, virulent clonal group. J Bacteriol. 2001;183(16):4727–36.
Article
CAS
Google Scholar
Stacy AK, Mitchell NM, Maddux JT, De la Cruz MA, Durán L, Girón JA, et al. Evaluation of the prevalence and production of Escherichia coli common pilus among avian pathogenic E. coli and its role in virulence. PloS one. 2014;9(1):e86565.
Article
Google Scholar
Avelino F, Saldaña Z, Islam S, Monteiro-Neto V, Dall’Agnol M, Eslava CA, et al. The majority of enteroaggregative Escherichia coli strains produce the E coli common pilus when adhering to cultured epithelial cells. Int J Med Microbiol. 2010;300(7):440–8.
Article
CAS
Google Scholar
Rendón MaA, Saldaña Z, Erdem AL, Monteiro-Neto V, Vázquez A, Kaper JB, et al. Commensal and pathogenic Escherichia coli use a common pilus adherence factor for epithelial cell colonization. Proc Natl Acad Sci. 2007;104(25):10637–42.
Article
Google Scholar
Blackburn D, Husband A, Saldaña Z, Nada RA, Klena J, Qadri F, et al. Distribution of the Escherichia coli common pilus among diverse strains of human enterotoxigenic E coli. J clin microbiol. 2009;47(6):1781–4.
Article
CAS
Google Scholar
Saldana Z, Erdem AL, Schüller S, Okeke IN, Lucas M, Sivananthan A, et al. The Escherichia coli common pilus and the bundle-forming pilus act in concert during the formation of localized adherence by enteropathogenic E. coli. Journal of bacteriology. 2009;191(11):3451–61.
Article
CAS
Google Scholar
Mellata M, Mitchell NM, Schödel F, Curtiss R 3rd, Pier GB. Novel vaccine antigen combinations elicit protective immune responses against Escherichia coli sepsis. Vaccine. 2016;34(5):656–62.
Article
CAS
Google Scholar
Stromberg ZR, Van Goor A, Redweik GA, Mellata M. Characterization of spleen transcriptome and immunity against avian colibacillosis after immunization with recombinant attenuated Salmonella vaccine strains. Front Vet Sci. 2018:198.
Green ER, Mecsas J. Bacterial secretion systems: an overview. Microbiol Spectr. 2016;4(1):1-19.
La Ragione R, Woodward MJ. Virulence factors of Escherichia coli serotypes associated with avian colisepticaemia. Res Vet Sci. 2002;73(1):27–35.
Article
Google Scholar
Ritchie JM, Waldor MK. The locus of enterocyte effacement-encoded effector proteins all promote enterohemorrhagic Escherichia coli pathogenicity in infant rabbits. Infect Immun. 2005;73(3):1466–74.
Article
CAS
Google Scholar
Salvador FA, Hernandes RT, Vieira MA, Rockstroh AC, Gomes TA. Distribution of non-LEE-encoded type 3 secretion system dependent effectors in enteropathogenic Escherichia coli. Braz J Microbiol. 2014;45(3):851–5.
Article
Google Scholar
Cox MJ, Cookson WO, Moffatt MF. Sequencing the human microbiome in health and disease. Hum Mol Genet. 2013;22(R1):R88–94.
Article
CAS
Google Scholar
Daubin V, Moran NA, Ochman H. Phylogenetics and the cohesion of bacterial genomes. Science. 2003;301(5634):829–32.
Article
CAS
Google Scholar
Větrovský T, Baldrian P. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS ONE. 2013;8(2):e57923.
Article
Google Scholar
Eisen JA. Horizontal gene transfer among microbial genomes: new insights from complete genome analysis. Curr Opin Genet Dev. 2000;10(6):606–11.
Article
CAS
Google Scholar
Yang B, Wang Y, Qian P-Y. Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis. BMC Bioinformatics. 2016;17(1):1–8.
Article
CAS
Google Scholar
Rajendhran J, Gunasekaran P. Microbial phylogeny and diversity: small subunit ribosomal RNA sequence analysis and beyond. Microbiol Res. 2011;166(2):99–110.
Article
CAS
Google Scholar
Heikema AP, Horst-Kreft D, Boers SA, Jansen R, Hiltemann SD, de Koning W, et al. Comparison of Illumina versus nanopore 16S rRNA gene sequencing of the human nasal microbiota. Genes. 2020;11(9):1105.
Article
CAS
Google Scholar