VILT. Belg eet minder rood vlees thuis (in Dutch). VILT. https://vilt.be/nl/nieuws/belg-eet-minder-rood-vlees-thuis. (Accessed 11 December 2020). 2020;:1–2. https://vilt.be/nl/nieuws/belg-eet-minder-rood-vlees-thuis.
Witte B, Obloj P, Koktenturk S, Morach B, Brigl M, Rogg J, et al. Food for Thought. The Protein Transformation. 2021.
Geeraerts W, De Vuyst L, Leroy F. Ready-to-eat meat alternatives, a study of their associated bacterial communities. Food Biosci. 2020;37:2–7.
Article
Google Scholar
Doulgeraki AI, Ercolini D, Villani F, Nychas GJE. Spoilage microbiota associated to the storage of raw meat in different conditions. Int J Food Microbiol. 2012;157:130–41. doi:https://doi.org/10.1016/j.ijfoodmicro.2012.05.020.
Article
PubMed
Google Scholar
Samelis J. Managing Microbial Spoilage in the Meat Industry. In: de W. Blackburn C, editor. Food Spoilage Microorganisms. 1st edition. Sawston, United Kingdom: Woodhead Publishing Ltd; 2006. p. 213–86. doi:https://doi.org/10.1533/9781845691417.2.213.
Mo H, Kariluoto S, Piironen V, Zhu Y, Sanders MG, Vincken JP, et al. Effect of soybean processing on content and bioaccessibility of folate, vitamin B12 and isoflavones in tofu and tempe. Food Chem. 2013;141:2418–25. doi:https://doi.org/10.1016/j.foodchem.2013.05.017.
Article
CAS
PubMed
Google Scholar
Rossi F, Felis GE, Martinelli A, Calcavecchia B, Torriani S. Microbiological characteristics of fresh tofu produced in small industrial scale and identification of specific spoiling microorganisms (SSO). LWT - Food Sci Technol. 2016;70:280–5. doi:https://doi.org/10.1016/j.lwt.2016.02.057.
Article
CAS
Google Scholar
Lee DY, Kwon KH, Chai C, Oh SW. Microbial contamination of tofu in Korea and growth characteristics of Bacillus cereus isolates in tofu. LWT - Food Sci Technol. 2017;78:63–9. doi:https://doi.org/10.1016/j.lwt.2016.11.081.
Article
CAS
Google Scholar
Petruzzi L, Corbo MR, Sinigaglia M, Bevilacqua A. Microbial Spoilage of Foods: Fundamentals. In: Bevilacqua A, Corbo MR, Sinigaglia M, editors. The Microbiological Quality of Food: Foodborne Spoilers. 1st edition. Sawston, United Kingdom: Woodhead Publishing Ltd; 2017. p. 1–21. doi:https://doi.org/10.1016/B978-0-08-100502-6.00002-9.
Nowak J, Myszka K, Biegańska-Marecik R, Staninska-Pięta J, Cyplik P, Kowalski R, et al. Characterization of specific spoilage organisms (SSOs) in vacuum-packed ham by culture-plating techniques and MiSeq next-generation sequencing technologies. J Sci Food Agric. 2016;97:659–68.
PubMed
Google Scholar
Jagadeesan B, Gerner-Smidt P, Allard MW, Leuillet S, Winkler A, Xiao Y, et al. The use of next generation sequencing for improving food safety: Translation into practice. Food Microbiol. 2019;79:96–115.
Article
CAS
Google Scholar
Gołębiewski M, Tretyn A. Generating amplicon reads for microbial community assessment with next generation sequencing. J Appl Microbiol. 2019;:1–25. doi:https://doi.org/10.1111/jam.14380.
Duthoo E, Rasschaert G, Leroy F, Weckx S, Heyndrickx M, De Reu K. The microbiota of modified-atmosphere‐packaged cooked charcuterie products throughout their shelf‐life period, as revealed by a complementary combination of culture‐dependent and culture‐independent analysis. Microorganisms. 2021;9:1–20.
Article
Google Scholar
Strandén A, Frei R, Widmer AF. Molecular typing of methicillin-resistant Staphylococcus aureus: Can PCR replace pulsed-field gel electrophoresis? J Clin Microbiol. 2003;41:3181–6.
Article
Google Scholar
Rademaker JLW, Louws FJ, Versalovic J, De Bruijn FJ. Characterization of the diversity of ecological important microbes by rep-PCR genomic fingerprinting. In: Kowalchuk GA, De Bruijn FJ, Head IM, Akkermans AD, van Elsas JD, editors. Molecular Microbial Ecology Manual. 1st edition. Dordrecht, The Netherlands: Kluwer Academic Publishers; 2004. p. 1–33.
Gevers D, Huys G, Swings J. Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. FEMS Microbiol Lett. 2001;205:31–6.
Article
CAS
Google Scholar
Brosius J, Palmer ML, Kennedy PJ, Noller HF. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci U S A. 1978;75:4801–5.
Article
CAS
Google Scholar
Bandeira B, Jamet JL, Jamet D, Ginoux JM. Mathematical convergences of biodiversity indices. Ecol Indic. 2013;29:522–8. doi:https://doi.org/10.1016/j.ecolind.2013.01.028.
Article
Google Scholar
Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41:1–11. doi:https://doi.org/10.1093/nar/gks808.
Article
CAS
Google Scholar
Morgan M, Anders S, Lawrence M, Aboyoun P, Pagès H, Gentleman R. ShortRead: A bioconductor package for input, quality assessment and exploration of high-throughput sequence data. Bioinformatics. 2009;25:2607–8.
Article
CAS
Google Scholar
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.
Article
CAS
Google Scholar
Wang Q, Garrity GM, Tiedje JM, Cole JR. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.
Article
CAS
Google Scholar
Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris HMB, Mattarelli P, et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol. 2020;70:2782–858.
Article
CAS
Google Scholar
McMurdie PJ, Holmes S. Phyloseq: an R Package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:1–11.
Article
Google Scholar
Vasilopoulos C, Ravyts F, De Maere H, De Mey E, Paelinck H, De Vuyst L, et al. Evaluation of the spoilage lactic acid bacteria in modified-atmosphere- packaged artisan-type cooked ham using culture-dependent and culture-independent approaches. J Appl Microbiol. 2008;104:1341–53.
Article
CAS
Google Scholar
Dušková M, Kameník J, Lačanin I, Šedo O, Zdráhal Z. Lactic acid bacteria in cooked hams - Sources of contamination and chances of survival in the product. Food Control. 2016;61:1–5.
Article
Google Scholar
Kreyenschmidt J, Hübner A, Beierle E, Chonsch L, Scherer A, Petersen B. Determination of the shelf life of sliced cooked ham based on the growth of lactic acid bacteria in different steps of the chain. J Appl Microbiol. 2010;108:510–20.
Article
CAS
Google Scholar
Javůrková VG, Pokorná M, Mikšík I, Tůmová E. Concentration of egg white antimicrobial and immunomodulatory proteins is related to eggshell pigmentation across traditional chicken breeds. Poult Sci. 2019;98:6931–41.
Article
Google Scholar
Hernández-Aquino S, Miranda-Romero LA, Fujikawa H, de Jesús Maldonado-Simán E, Alarcón-Zuñiga B. Antibacterial activity of lactic acid bacteria to improve shelf life of raw meat. Biocontrol Sci. 2019;24:185–92.
Article
Google Scholar
Kolbeck S, Ludwig C, Meng C, Hilgarth M, Vogel RF. Comparative proteomics of meat spoilage bacteria predicts drivers for their coexistence on modified atmosphere packaged meat. Front Microbiol. 2020;11:1–15.
Article
Google Scholar
Iulietto MF, Sechi P, Borgogni E, Cenci-Goga BT. Meat spoilage: A critical review of a neglected alteration due to ropy slime producing bacteria. Ital J Anim Sci. 2015;14:316–26.
Article
Google Scholar
Katikou P, Ambrosiadis I, Georgantelis D, Koidis P, Georgakis SA. Effect of Lactobacillus-protective cultures with bacteriocin-like inhibitory substances’ producing ability on microbiological, chemical and sensory changes during storage of refrigerated vacuum-packaged sliced beef. J Appl Microbiol. 2005;99:1303–13.
Article
CAS
Google Scholar
Vermeiren L, Devlieghere F, Vandekinderen I, Rajtak U, Debevere J. The sensory acceptability of cooked meat products treated with a protective culture depends on glucose content and buffering capacity: a case study with Lactobacillus sakei 10A. Meat Sci. 2006;74:532–45.
Article
CAS
Google Scholar
Aymerich MT, Garriga M, Costa S, Monfort JM, Hugas M. Prevention of ropiness in cooked pork by bacteriocinogenic cultures. Int Dairy J. 2002;12:239–46.
Article
Google Scholar
Kneifel W, Berger E. Microbiological criteria of random samples of spices and herbs retailed on the Austrian market. J Food Prot. 1994;57:893–901.
Article
Google Scholar
Collins MD, Jones D, Farrow JAE, Kilpper-Bälz R, Schleifer KH. Enterococcus avium nom. rev., comb. nov.; E. casselipavus norn. rev., comb. nov.; E. durans norn. rev., comb. nov.; E. gallinarum comb. nov.; and E. malodoratus sp. nov. Int J Syst Bacteriol. 1984;34:220–3.
Svec P, Vancanneyt M, Koort J, Naser SM, Hoste B, Vihavainen E, et al. Enterococcus devriesei sp. nov., associated with animal sources. Int J Syst Evol Microbiol. 2005;55:2479–84.
Article
CAS
Google Scholar
Rahkila R, Johansson P, Säde E, Björkroth J. Identification of Enterococci from broiler products and a broiler processing plant and description of Enterococcus viikkiensis sp. nov. Appl Environ Microbiol. 2011;77:1196–203.
Article
CAS
Google Scholar
Casaburi A, Piombino P, Nychas GJ, Villani F, Ercolini D. Bacterial populations and the volatilome associated to meat spoilage. Food Microbiol. 2015;45:83–102. doi:https://doi.org/10.1016/j.fm.2014.02.002.
Article
CAS
PubMed
Google Scholar
Ercolini D, Russo F, Nasi A, Ferranti P, Villani F. Mesophilic and psychrotrophic bacteria from meat and their spoilage potential in vitro and in beef. Appl Environ Microbiol. 2009;75:1990–2001.
Article
CAS
Google Scholar
Pothakos V, Devlieghere F, Villani F, Björkroth J, Ercolini D. Lactic acid bacteria and their controversial role in fresh meat spoilage. Meat Sci. 2015;109:66–74. doi:https://doi.org/10.1016/j.meatsci.2015.04.014.
Article
CAS
PubMed
Google Scholar
Casaburi A, De Filippis F, Villani F, Ercolini D. Activities of strains of Brochothrix thermosphacta in vitro and in meat. Food Res Int. 2014;62:366–74. doi:https://doi.org/10.1016/j.foodres.2014.03.019.
Article
CAS
Google Scholar
Gribble A, Mills J, Brightwell G. The spoilage characteristics of Brochothrix thermosphacta and two psychrotolerant Enterobacteriacae in vacuum packed lamb and the comparison between high and low pH cuts. Meat Sci. 2014;97:83–92. doi:https://doi.org/10.1016/j.meatsci.2014.01.006.
Article
CAS
PubMed
Google Scholar
Fall PA, Leroi F, Cardinal M, Chevalier F, Pilet MF. Inhibition of Brochothrix thermosphacta and sensory improvement of tropical peeled cooked shrimp by Lactococcus piscium CNCM I-4031. Lett Appl Microbiol. 2010;50:357–61.
Article
CAS
Google Scholar
Leroi F, Fall PA, Pilet MF, Chevalier F, Baron R. Influence of temperature, pH and NaCl concentration on the maximal growth rate of Brochothrix thermosphacta and a bioprotective bacteria Lactococcus piscium CNCM I-4031. Food Microbiol. 2012;31:222–8. doi:https://doi.org/10.1016/j.fm.2012.02.014.
Article
CAS
PubMed
Google Scholar
Mohsina K, Ratkowsky DA, Bowman JP, Powell S, Kaur M, Tamplin ML. Effect of glucose, pH and lactic acid on Carnobacterium maltaromaticum, Brochothrix thermosphacta and Serratia liquefaciens within a commercial heat-shrunk vacuum-package film. Food Microbiol. 2020;91:1–6. doi:https://doi.org/10.1016/j.fm.2020.103515.
Article
CAS
Google Scholar
Pellissery AJ, Vinayamohan PG, Amalaradjou MAR, Venkitanarayanan K. Spoilage Bacteria and Meat Quality. In: Biswas AK, Mandal P, editors. Meat quality analysis: advanced evaluation methods, techniques, and technologies. 1st edition. Cambridge, United States: Academic Press; 2019. p. 307–34. doi:https://doi.org/10.1016/B978-0-12-819233-7.00017-3.
Yost CK, Nattress FM. Molecular typing techniques to characterize the development of a lactic acid bacteria community on vacuum-packaged beef. Int J Food Microbiol. 2002;72:97–105.
Article
CAS
Google Scholar
Hauzoukim SS, Biswajit M. Modified atmosphere packaging of fish and fish products. J Entomol Zool Stud. 2020;8:651–9.
Google Scholar
Opara UL, Caleb OJ, Belay ZA. Modified Atmosphere Packaging for Food Preservation. In: Galanakis CM, editor. Food Quality and Shelf Life. 1st edition. Cambridge, United States: Academic Press; 2019. p. 235–59. doi:https://doi.org/10.1016/b978-0-12-817190-5.00007-0.
Borch E, Kant-Muermans ML, Blixt Y. Bacterial spoilage of meat and cured meat products. Int J Food Microbiol. 1996;33:103–20.
Article
CAS
Google Scholar
Björkroth KJ, Korkeala HJ. Use of rRNA gene restriction patterns to evaluate lactic acid bacterium contamination of vacuum-packaged sliced cooked whole-meat product in a meat processing plant. Appl Environ Microbiol. 1997;63:448–53.
Article
Google Scholar
Yang C, Zhao F, Hou Q, Wang J, Li M, Sun Z. PacBio sequencing reveals bacterial community diversity in cheeses collected from different regions. J Dairy Sci. 2020;103:1238–49. doi:https://doi.org/10.3168/jds.2019-17496.
Article
CAS
PubMed
Google Scholar
Cauchie E, Delhalle L, Baré G, Tahiri A, Taminiau B, Korsak N, et al. Modeling the growth and interaction between Brochothrix thermosphacta, Pseudomonas spp., and Leuconostoc gelidum in minced pork samples. Front Microbiol. 2020;11:1–23.
Sharma A, Gautam S, Wadhawan S. Xanthomonas. Encycl Food Microbiol. 2014;3:811–7.
Article
Google Scholar
Nychas GJE, Skandamis PN, Tassou CC, Koutsoumanis KP. Meat spoilage during distribution. Meat Sci. 2008;78:77–89.
Article
Google Scholar
Nychas GJE, Skandamis PN. Fresh Meat Spoilage and Modified Atmosphere Packaging (MAP). In: Sofos JN, editor. Improving the Safety of Fresh Meat. 1st edition. Sawston, United Kingdom: Woodhead Publishing Ltd; 2005. p. 461–502. doi:https://doi.org/10.1533/9781845691028.2.461.
Fusco V, Quero GM, Cho GS, Kabisch J, Meske D, Neve H, et al. The genus Weissella: taxonomy, ecology and biotechnological potential. Front Microbiol. 2015;6:1–22.
Article
Google Scholar
Narvhus JA, Axelsson L. Lactic acid bacteria. In: Nutrition & Food Science. 2003. p. 3465–72.
Giraffa G. Enterococci from foods. FEMS Microbiol Rev. 2002;26:163–71.
Article
CAS
Google Scholar
Pédron J, Guyon L, Lecomte A, Blottière L, Chandeysson C, Rochelle-Newall E, et al. Comparison of environmental and culture-derived bacterial communities through 16S metabarcoding: a powerful tool to assess media selectivity and detect rare taxa. Microorganisms. 2020;8:1–17.
Article
Google Scholar
Marotz CA, Sanders JG, Zuniga C, Zaramela LS, Knight R, Zengler K. Improving saliva shotgun metagenomics by chemical host DNA depletion. Microbiome. 2018;6:1–9.
Article
Google Scholar