NIH. 2002. Research on microbial biofilms. https://grants.nih.gov/grants/guide/pa-files/pa-03-047.html. Accessed
Davies D. 2003. Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2:114–22.
Article
CAS
PubMed
Google Scholar
Mihai MM, Holban AM, Giurcaneanu C, Popa LG, Oanea RM, Lazar V, Chifiriuc MC, Popa M, Popa MI. 2015. Microbial biofilms: impact on the pathogenesis of periodontitis, cystic fibrosis, chronic wounds and medical device-related infections. Curr Top Med Chem 15:1552–76.
Article
CAS
PubMed
Google Scholar
Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. 2016. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14:563–75.
Article
CAS
PubMed
Google Scholar
Stewart PS. 1998. A review of experimental measurements of effective diffusive permeabilities and effective diffusion coefficients in biofilms. Biotechnol Bioeng 59:261–72.
Article
CAS
PubMed
Google Scholar
Mulcahy LR, Burns JL, Lory S, Lewis K. 2010. Emergence of Pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis. J Bacteriol 192:6191–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fisher RA, Gollan B, Helaine S. 2017. Persistent bacterial infections and persister cells. Nat Rev Microbiol 15:453–464.
Article
CAS
PubMed
Google Scholar
Costerton JW, Stewart PS, Greenberg EP. 1999. Bacterial biofilms: a common cause of persistent infections. Science 284:1318–22.
Article
CAS
PubMed
Google Scholar
Stewart PS, Costerton JW. 2001. Antibiotic resistance of bacteria in biofilms. Lancet 358:135–8.
Article
CAS
PubMed
Google Scholar
Gunn JS, Bakaletz LO, Wozniak DJ. 2016. What’s on the Outside Matters: The Role of the Extracellular Polymeric Substance of Gram-negative Biofilms in Evading Host Immunity and as a Target for Therapeutic Intervention. J Biol Chem 291:12538–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peng X, Zhang Y, Bai G, Zhou X, Wu H. 2016. Cyclic di-AMP mediates biofilm formation. Mol Microbiol 99:945–59.
Article
CAS
PubMed
Google Scholar
Pleszczynska M, Wiater A, Janczarek M, Szczodrak J. 2015. (1–>3)-alpha-D-Glucan hydrolases in dental biofilm prevention and control: A review. Int J Biol Macromol 79:761–78.
Article
CAS
PubMed
Google Scholar
Fleming D, Chahin L, Rumbaugh K. 2017. Glycoside Hydrolases Degrade Polymicrobial Bacterial Biofilms in Wounds. Antimicrob Agents Chemother 61.
Brackman G, Coenye T. 2015. Quorum sensing inhibitors as anti-biofilm agents. Curr Pharm Des 21:5–11.
Article
CAS
PubMed
Google Scholar
DiGiandomenico A, Warrener P, Hamilton M, Guillard S, Ravn P, Minter R, Camara MM, Venkatraman V, Macgill RS, Lin J, Wang Q, Keller AE, Bonnell JC, Tomich M, Jermutus L, McCarthy MP, Melnick DA, Suzich JA, Stover CK. 2012. Identification of broadly protective human antibodies to Pseudomonas aeruginosa exopolysaccharide Psl by phenotypic screening. J Exp Med 209:1273–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Flores-Mireles AL, Pinkner JS, Caparon MG, Hultgren SJ. 2014. EbpA vaccine antibodies block binding of Enterococcus faecalis to fibrinogen to prevent catheter-associated bladder infection in mice. Sci Transl Med 6:254ra127.
Article
PubMed
PubMed Central
CAS
Google Scholar
Koo H, Allan RN, Howlin RP, Stoodley P, Hall-Stoodley L. 2017. Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol 15:740–755.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haurat MF, Aduse-Opoku J, Rangarajan M, Dorobantu L, Gray MR, Curtis MA, Feldman MF. 2011. Selective sorting of cargo proteins into bacterial membrane vesicles. Journal of biological chemistry 286:1269–1276.
Article
CAS
PubMed
Google Scholar
Baumgarten T, Sperling S, Seifert J, von Bergen M, Steiniger F, Wick LY, Heipieper HJ. 2012. Membrane vesicle formation as a multiple-stress response mechanism enhances Pseudomonas putida DOT-T1E cell surface hydrophobicity and biofilm formation. Appl Environ Microbiol 78:6217–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mashburn-Warren L, Howe J, Garidel P, Richter W, Steiniger F, Roessle M, Brandenburg K, Whiteley M. 2008. Interaction of quorum signals with outer membrane lipids: insights into prokaryotic membrane vesicle formation. Molecular Microbiology 69:491–502.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bonnington KE, Kuehn MJ. 2014. Protein selection and export via outer membrane vesicles. Biochim Biophys Acta 1843:1612–9.
Article
CAS
PubMed
Google Scholar
Tashiro Y, Inagaki A, Shimizu M, Ichikawa S, Takaya N, Nakajima-Kambe T, Uchiyama H, Nomura N. 2011. Characterization of phospholipids in membrane vesicles derived from Pseudomonas aeruginosa. Biosci Biotechnol Biochem 75:605–7.
Article
CAS
PubMed
Google Scholar
Nieves W, Asakrah S, Qazi O, Brown KA, Kurtz J, Aucoin DP, McLachlan JB, Roy CJ, Morici LA. 2011. A naturally derived outer-membrane vesicle vaccine protects against lethal pulmonary Burkholderia pseudomallei infection. Vaccine 29:8381–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sjostrom AE, Sandblad L, Uhlin BE, Wai SN. 2015. Membrane vesicle-mediated release of bacterial RNA. Sci Rep 5:15329.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dorward DW, Garon CF. 1990. DNA Is Packaged within Membrane-Derived Vesicles of Gram-Negative but Not Gram-Positive Bacteria. Appl Environ Microbiol 56:1960–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mashburn-Warren LM, Whiteley M. 2006. Special delivery: vesicle trafficking in prokaryotes. Mol Microbiol 61:839–46.
Article
CAS
PubMed
Google Scholar
Schooling SR, Beveridge TJ. 2006. Membrane vesicles: an overlooked component of the matrices of biofilms. J Bacteriol 188:5945–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vasilyeva NV, Tsfasman IM, Suzina NE, Stepnaya OA, Kulaev IS. 2008. Secretion of bacteriolytic endopeptidase L5 of Lysobacter sp. XL1 into the medium by means of outer membrane vesicles. FEBS J 275:3827–35.
Article
CAS
PubMed
Google Scholar
Berleman JE, Allen S, Danielewicz MA, Remis JP, Gorur A, Cunha J, Hadi MZ, Zusman DR, Northen TR, Witkowska HE, Auer M. 2014. The lethal cargo of Myxococcus xanthus outer membrane vesicles. Front Microbiol 5:474.
Article
PubMed
PubMed Central
Google Scholar
Kadurugamuwa JL, Beveridge TJ. 1996. Bacteriolytic effect of membrane vesicles from Pseudomonas aeruginosa on other bacteria including pathogens: conceptually new antibiotics. J Bacteriol 178:2767–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Z, Clarke AJ, Beveridge TJ. 1998. Gram-negative bacteria produce membrane vesicles which are capable of killing other bacteria. J Bacteriol 180:5478–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
MacDonald KL, Beveridge TJ. 2002. Bactericidal effect of gentamicin-induced membrane vesicles derived from Pseudomonas aeruginosa PAO1 on gram-positive bacteria. Can J Microbiol 48:810–20.
Article
CAS
PubMed
Google Scholar
Baker S, Davitt C, Morici L. 2016. Gram-Negative Bacterial Outer Membrane Vesicles Inhibit Growth of Multidrug-Resistant Organisms and Induce Wound-Healing Cytokines. Open Forum Infectious Diseases 3.
Novem V, Shui G, Wang D, Bendt AK, Sim SH, Liu Y, Thong TW, Sivalingam SP, Ooi EE, Wenk MR, Tan G. 2009. Structural and biological diversity of lipopolysaccharides from Burkholderia pseudomallei and Burkholderia thailandensis. Clin Vaccine Immunol 16:1420–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Hoffmann JP, Chou C-W, Höner zu Bentrup K, Fuselier JA, Bitoun JP, Wimley WC, Morici LA. 2020. Burkholderia thailandensis outer membrane vesicles exert antimicrobial activity against drug-resistant and competitor microbial species. Journal of Microbiology doi:https://doi.org/10.1007/s12275-020-0028-1.
Article
PubMed
Google Scholar
Petersen PE, Ogawa H. 2016. Prevention of dental caries through the use of fluoride - the WHO approach. Community Dental Health 33:66–68.
PubMed
Google Scholar
Loesche WJ. 1986. Role of Streptococcus mutans in human dental decay. Microbiol Rev 50:353–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koo H, Xiao J, Klein MI. 2009. Extracellular polysaccharides matrix–an often forgotten virulence factor in oral biofilm research. Int J Oral Sci 1:229–34.
Article
PubMed
PubMed Central
Google Scholar
Nomura R, Nakano K, Nemoto H, Fujita K, Inagaki S, Takahashi T, Taniguchi K, Takeda M, Yoshioka H, Amano A. 2006. Isolation and characterization of Streptococcus mutans in heart valve and dental plaque specimens from a patient with infective endocarditis. Journal of medical microbiology 55:1135–1140.
Article
CAS
PubMed
Google Scholar
Lemos JA, Quivey RG, Jr., Koo H, Abranches J. 2013. Streptococcus mutans: a new Gram-positive paradigm? Microbiology 159:436–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersboll BK, Molin S. 2000. Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 146 (Pt 10):2395–407.
Article
CAS
PubMed
Google Scholar
Snyder RJ, Wilkowske CJ, Washington JA. 1975. Bactericidal activity of combinations of gentamicin with penicillin or clindamycin against Streptococcus mutans. Antimicrobial Agents and Chemotherapy 7:333–335.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vollmer W, Blanot D, de Pedro MA. 2008. Peptidoglycan structure and architecture. FEMS Microbiol Rev 32:149–67.
Article
CAS
PubMed
Google Scholar
Vial L, Lepine F, Milot S, Groleau MC, Dekimpe V, Woods DE, Deziel E. 2008. Burkholderia pseudomallei, B. thailandensis, and B. ambifaria produce 4-hydroxy-2-alkylquinoline analogues with a methyl group at the 3 position that is required for quorum-sensing regulation. J Bacteriol 190:5339–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu Y, Seyedsayamdost MR. 2017. Synergy and Target Promiscuity Drive Structural Divergence in Bacterial Alkylquinolone Biosynthesis. Cell Chem Biol 24:1437–1444.e3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abdel-Mawgoud AM, Lepine F, Deziel E. 2010. Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol 86:1323–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
De Rienzo MA, Martin PJ. 2016. Effect of Mono and Di-rhamnolipids on Biofilms Pre-formed by Bacillus subtilis BBK006. Curr Microbiol 73:183–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Elshikh M, Funston S, Chebbi A, Ahmed S, Marchant R, Banat IM. 2017. Rhamnolipids from non-pathogenic Burkholderia thailandensis E264: Physicochemical characterization, antimicrobial and antibiofilm efficacy against oral hygiene related pathogens. N Biotechnol 36:26–36.
Article
CAS
PubMed
Google Scholar
Vatsa P, Sanchez L, Clement C, Baillieul F, Dorey S. 2010. Rhamnolipid biosurfactants as new players in animal and plant defense against microbes. Int J Mol Sci 11:5095–108.
Article
CAS
PubMed
PubMed Central
Google Scholar
De A, Liao S, Bitoun JP, Roth R, Beatty WL, Wu H, Wen ZT. 2017. Deficiency of RgpG Causes Major Defects in Cell Division and Biofilm Formation, and Deficiency of LytR-CpsA-Psr Family Proteins Leads to Accumulation of Cell Wall Antigens in Culture Medium by Streptococcus mutans. Appl Environ Microbiol 83.
Jiang W, Wang Y, Luo J, Chen X, Zeng Y, Li X, Feng Z, Zhang L. 2020. Antimicrobial Peptide GH12 Prevents Dental Caries by Regulating Dental Plaque Microbiota. Appl Environ Microbiol 86.
Starr CG, Ghimire J, Guha S, Hoffmann JP, Wang Y, Sun L, Landreneau BN, Kolansky ZD, Kilanowski-Doroh IM, Sammarco MC, Morici LA, Wimley WC. 2020. Synthetic molecular evolution of host cell-compatible, antimicrobial peptides effective against drug-resistant, biofilm-forming bacteria. Proceedings of the National Academy of Sciences doi:https://doi.org/10.1073/pnas.1918427117:201918427.
Alves NJ, Turner KB, Medintz IL, Walper SA. 2016. Protecting enzymatic function through directed packaging into bacterial outer membrane vesicles. Sci Rep 6:24866.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gnopo YMD, Watkins HC, Stevenson TC, DeLisa MP, Putnam D. 2017. Designer outer membrane vesicles as immunomodulatory systems - Reprogramming bacteria for vaccine delivery. Adv Drug Deliv Rev 114:132–142.
Article
CAS
PubMed
Google Scholar
de Queiroz VS, Ccahuana-Vasquez RA, Tedesco AF, Lyra L, Cury JA, Schreiber AZ. 2016. Influence of the Culture Medium in Dose-Response Effect of the Chlorhexidine on Streptococcus mutans Biofilms. Scientifica (Cairo) 2016:2816812.
Koo H, Hayacibara MF, Schobel BD, Cury JA, Rosalen PL, Park YK, Vacca-Smith AM, Bowen WH. 2003. Inhibition of Streptococcus mutans biofilm accumulation and polysaccharide production by apigenin and tt-farnesol. J Antimicrob Chemother 52:782–9.
Article
CAS
PubMed
Google Scholar
Loo CY, Corliss DA, Ganeshkumar N. 2000. Streptococcus gordonii biofilm formation: identification of genes that code for biofilm phenotypes. J Bacteriol 182:1374–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bitoun JP, Liao S, Yao X, Ahn SJ, Isoda R, Nguyen AH, Brady LJ, Burne RA, Abranches J, Wen ZT. 2012. BrpA is involved in regulation of cell envelope stress responses in Streptococcus mutans. Appl Environ Microbiol 78:2914–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wen ZT, Burne RA. 2002. Functional genomics approach to identifying genes required for biofilm development by Streptococcus mutans. Appl Environ Microbiol 68:1196–203.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nilsson M, Rybtke M, Givskov M, Hoiby N, Twetman S, Tolker-Nielsen T. 2016. The dlt genes play a role in antimicrobial tolerance of Streptococcus mutans biofilms. Int J Antimicrob Agents 48:298–304.
Article
CAS
PubMed
Google Scholar
Korber D, Lawrence J, Hendry M, Caldwell D. 1993. Analysis of spatial variability within Mot + and Mot – Pseudomonas fluorescens biofilms using representative elements. Biofouling 7:339–358.
Article
Google Scholar
Vorregaard M. 2008. Comstat2-a modern 3D image analysis environment for biofilmsCiteseer.
Bitoun JP, Nguyen AH, Fan Y, Burne RA, Wen ZT. 2011. Transcriptional repressor Rex is involved in regulation of oxidative stress response and biofilm formation by Streptococcus mutans. FEMS Microbiol Lett 320:110–7.
Article
CAS
PubMed
Google Scholar
Wen ZT, Baker HV, Burne RA. 2006. Influence of BrpA on critical virulence attributes of Streptococcus mutans. J Bacteriol 188:2983–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wen ZT, Suntharaligham P, Cvitkovitch DG, Burne RA. 2005. Trigger factor in Streptococcus mutans is involved in stress tolerance, competence development, and biofilm formation. Infect Immun 73:219–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mah TF. 2014. Establishing the minimal bactericidal concentration of an antimicrobial agent for planktonic cells (MBC-P) and biofilm cells (MBC-B). J Vis Exp doi:https://doi.org/10.3791/50854:e50854.
Article
PubMed
PubMed Central
Google Scholar
He L, Shobnam N, Wimley WC, Hristova K. 2011. FGFR3 heterodimerization in achondroplasia, the most common form of human dwarfism. J Biol Chem 286:13272–81.
Article
CAS
PubMed
PubMed Central
Google Scholar