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Abstract

Background:Biofilms are microbial communities surrounded by a self-produced extracellular matrix which protects
them from environmental stress. Bacteria within biofilms are 10- to 1000-fold more resistant to antibiotics, making it
challenging but imperative to develop new therapeutics that can disperse biofilms and eradicate infection. Gram-
negative bacteria produce outer membrane vesicles (OMV) that play critical roles in communication, genetic
exchange, cargo delivery, and pathogenesis. We have previously shown that OMVs derived fromBurkholderia
thailandensisinhibit the growth of drug-sensitive and drug-resistant bacteria and fungi.

Results:Here, we examine the antibiofilm activity ofBurkholderia thailandensisOMVs against the oral biofilm-
forming pathogenStreptococcus mutans. We demonstrate that OMV treatment reduces biofilm biomass, biofilm
integrity, and bacterial cell viability. Both heat-labile and heat-stable components, including 4-hydroxy-3-methyl-2-
(2-non-enyl)-quinoline and long-chain rhamnolipid, contribute to the antibiofilm activity of OMVs. When OMVs are
co-administered with gentamicin, the efficacy of the antibiotic againstS. mutansbiofilms is enhanced.

Conclusion:These studies indicate that bacterial-derived OMVs are highly effective biological nanoparticles that
can inhibit and potentially eradicate biofilms.
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Background
Biofilms are surface-associated microbial communities
surrounded by a complex and highly viscous extracellular
polymeric substance (EPS) composed of polysaccharides,
proteins, lipids and other microbial-derived products. Ac-
cording to the National Institutes of Health, biofilm-
forming pathogens are responsible for 80 % of human in-
fections [1, 2]. Biofilm-related infections often result from
microbial colonization of soft tissues or medical implants
and can manifest as persistent or chronic diseases [3]. The

gel-like EPS encases and protects the microbes from anti-
microbials and host immune defense mechanisms, se-
verely obstructing the eradication of biofilm-forming
pathogens. Previous work indicates that bacteria within
biofilms are 10- to 1000-fold more resistant to common
antibiotics [2]. This is due to a number of resistance
mechanisms including poor biofilm penetration by anti-
microbial agents [4, 5]; metabolically-inactive, dormant, or
persister cell bacterial phenotypes with reduced drug sus-
ceptibility [6, 7]; and a variety of other bacterial adaptive
responses [2, 8, 9]. For these reasons, new therapeutic
strategies that can both inhibit and disrupt bacterial bio-
films are needed to prevent chronic infections. Various ap-
proaches, including inhibitors of EPS formation [10, 11],
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biofilm-degrading enzymes [12, 13], quorum sensing in-
hibitors [14], and vaccination [15, 16] are being pursued
but none are available for clinical use thus far [17].

Gram-negative bacteria naturally and constitutively
shed outer membrane vesicles (OMV) from their surface
in an active and selective response to extracellular
stressors [18, 19]. OMV nanoparticles range in size be-
tween 20 and 450 nm. OMVs contain numerous compo-
nents including small molecules [20], proteins [21],
lipids [22], polysaccharides [23], and RNA/DNA [24, 25]
that are embedded within the OMV bi-layered mem-
brane or within the vesicle lumen. OMVs serve various
roles in nature, including but not limited to, cargo deliv-
ery, cell to cell communication, and genetic exchange
[26]. OMVs are ubiquitous and an important particulate
constituent of Gram-negative and polymicrobial biofilms
[27]. In recent years, several groups, including ours, have
reported on the potent antimicrobial activity of OMVs
mediated by small molecules, surfactants, and enzymes
[28–33]. Given their antimicrobial activity and natural
occurrence in bacterial biofilms, we hypothesized that
OMVs could potentially be useful in treating or disrupt-
ing biofilms formed by competitor bacteria. In previous
work, we showed that OMVs derived fromBurkholderia
thailandensis inhibit the growth of drug-sensitive and
drug-resistant bacteria and fungi.B. thailandensisis an
oxidase-positive, Gram-negative rod that is considered
largely non-pathogenic to humans.B. thailandensiscon-
tains a mixture of tetra- and penta-acylated lipid A spe-
cies that dampens lipopolysaccharide (LPS)-mediated
endotoxicity [34]. A number of antimicrobial com-
pounds, including peptidoglycan hydrolases, 4-hydroxy-
3-methyl-2-(2-non-enyl)-quinoline (HMNQ), and long-
chain rhamnolipid are present in or tightly associate
with B. thailandensisOMVs [35].

Cariogenic plaque is one of the best-characterized bio-
films known to develop within the human body. Al-
though well-described in the literature, it is still a
neglected topic and major health problem affecting 60–
90 % of children and most adults globally [36]. As one of
the most cariogenic microorganisms in dental biofilms,
Streptococcus mutansis capable of using dietary carbo-
hydrates, especially sucrose, to produce organic acids
that demineralize tooth enamel and generate robust bio-
films with glucan-based EPS. These biofilms serve as im-
portant virulence factors for supporting the bacterial
community on dental surfaces [37, 38]. In addition to
dental caries,S. mutans is also one of the common
causes of endocarditis [39]. Furthermore,S. mutansis a
model Gram-positive organism that can help provide a
better understanding of biofilm biology, genetics, and
physiology for other closely-related streptococcal as well
as other Gram-positive species [40]. In this study, we
evaluated the antimicrobial and antibiofilm activity ofB.

thailandensisOMVs against the robust biofilm-forming,
oral pathogenS. mutans. Here we show that OMVs ex-
hibit potent bactericidal activity againstS. mutansand
reduce total biomass, biofilm integrity, and cell viability
when applied to pre-formedS. mutansbiofilms. Previ-
ously identified heat-stable components of OMVs,
HMNQ and rhamnolipid, contribute to their antimicro-
bial and antibiofilm activities. We also observed in-
creased efficacy of the antibiotic gentamicin when it was
co-delivered with OMVs. These findings suggest that
OMVs may represent a natural resource to combat
biofilm-forming microorganisms.

Results
Burkholderia thailandensis OMVs exhibit antimicrobial
activity against S. mutans
OMVs used for the current study were produced from
multiple, independent batches and characterized as pre-
viously described [35]. We first screened OMV anti-
microbial activity against S. mutans grown on agar
plates and in broth cultures. OMVs inhibitedS. mutans
growth on agar whereas the PBS control treatment did
not (Fig. 1 A). We used a Chi-squared test to compare
curves at all time points (seeMethods). Based on this
analysis, growth ofS. mutansin planktonic cultures was
significantly inhibited by OMVs compared to control
treatment, and OMV-mediated inhibition was dose-
dependent (Fig.1B).

OMVs inhibit S. mutans biofilms and planktonic cultures
in a time- and dose-dependent manner
We next evaluated whether OMVs could disrupt biofilm
formation by S. mutans. S. mutanswas cultured in bio-
film medium containing glucose and sucrose (BMGS) on
glass slides for 3 days (Fig.2 A) then treated them with
OMVs, gentamicin, or PBS. All cultures were run in par-
allel and compared to planktonic overnight cultures re-
ceiving the same treatments. The inhibition ofS. mutans
biofilm and planktonic cultures was readily observed
within 3 h of OMV treatment with greater than 10-fold
reduction in CFU. After 6 h, both biofilm and planktonic
cultures treated with OMVs showed 1000-fold reduction
in CFU compared to control-treated cultures at the same
time-point (Fig. 2B and C). OMV antimicrobial activity
was less effective againstS. mutansbiofilms compared
to planktonic cultures at 6 h post-treatment. Strikingly,
both concentrations tested (50 and 100 µg/ml) OMVs
killed all S. mutansplanktonic and biofilm cultures after
24 h compared to control-treated cultures that still con-
tained more than 107 CFU/mL viable cells. In pilot stud-
ies, concentrations less than 50 ug/ml were not effective
against biofilms when administered as a single dose.
Gentamicin at a concentration of 800 µg/mL failed to
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clear the bacteria, with more than 103 CFU/mL of viable
planktonic cells and 105 CFU/mL of viable biofilm cells
remaining after 24 h of treatment (Fig.2B and C). The
Chi-squared test showed highly significant differences
between the curves. OMVs displayed potent bactericidal
activity against bothS. mutansplanktonic and biofilm
cultures in a time- and dose-dependent manner. Not-
ably, while OMVs and gentamicin were both efficient in
killing planktonic cells,S. mutansbiofilms were signifi-
cantly more susceptible to OMVs than gentamicin.

OMVs reduce total biomass, biofilm integrity, and cell
viability in S. mutans biofilms
To further evaluate OMV-mediated disruption of pre-
formed, intactS. mutansbiofilms, we utilized fluorescent
confocal microscopy combined with COMSTAT ana-
lysis. Biofilms of S. mutans were grown on chamber
slides for 3 days then treated with PBS or increasing
doses of OMVs for 24 h prior to imaging. Biofilms were
stained with SYTO 9 to examine total biomass and pro-
pidium iodide (PI) to determine dead cell biomass.

Fig. 1 OMVs inhibit the growth ofS. mutans. The antimicrobial activity of OMVs againstS. mutanswas evaluated on(A) agar plates and in(B)
planktonic cultures. PBS (left side, 10 µL) or OMVs (right side, 10 µg suspended in 10 µL PBS) were spot plated onto agar streaked withS. mutans
and incubated for 24 h to determine growth inhibition. For planktonic cultures, overnight cultures ofS. mutanswere diluted 1:1000 in broth and
treated with 0.2, 1, or 2 µg OMVs or PBS in a total volume of 100 µL. OD600 was monitored for up to 12 h. The curves were compared using a
Chi-squared test, seeMethods. (****p < 0.0001)

Fig. 2 OMVs killS. mutansbiofilm and planktonic bacteria in a time- and dose-dependent manner.S. mutansbiofilm cells were harvested from
(A) three-day biofilms formed on glass slides cultured in BMGS. Planktonic cells ofS. mutanswere harvested from culture in BHI broth.S.
mutans(B)biofilm cells and(C)planktonic cells were treated with 50 or 100 µg/mL OMVs, 800 µg/mL gentamicin or PBS for up to 24 h with cell
viability monitored. Cells were adjusted to start from the same CFU. Bacterial cells under different treatments were plated on agar for CFU
determination at different time points. The curves were compared using a Chi-squared test, seeMethods. (****p < 0.0001)
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Remarkably, increasing concentrations of OMVs led to a
reduction in total biomass (green fluorescence) inS.
mutans biofilms as well as an increase in the biomass of
dead cells (red fluorescence; Fig.3 A-D). There was also
an observable decrease in biofilm thickness after OMV
treatments (Side bars, Fig.3 A-C). Furthermore, the lack
of red fluorescence at the bottom of OMV-treated bio-
films suggests an inability to fully penetrate the biofilm,
which is one of the obstacles in developing effective anti-
biofilm agents. COMSTAT analysis indicated that
OMVs reduced biofilm thickness and integrity in a dose-
dependent manner (Fig.3E). The significant increase in
roughness coefficient is further evidence of an overall
deterioration of biofilm integrity (Fig.3 F) [35, 41]. Scan-
ning electron micrographs of OMV-treated biofilms cor-
roborated the COMSTAT analyses by revealing
differences in biofilm architecture. In particular, OMV-
treated biofilms had a diminished presence of extracellu-
lar material and structures compared to healthy control
biofilms (Supplemental Figure1).

Heat-inactivated OMVs exhibit antimicrobial and
antibiofilm activity against S. mutans
In previous work, we demonstrated thatB. thailandensis
OMVs contain heat-labile peptidoglycan hydrolases that
contribute to their antimicrobial activity against
Staphylococcus aureusby degrading the cell wall [35].
However, when OMVs were applied to purifiedS.
mutans peptidoglycan, OMVs failed to degrade the pep-
tidoglycan (not shown). This suggested that OMV anti-
microbial activity againstS. mutansdoes not depend on
peptidoglycan degrading enzymes. To further examine
this, OMVs were heat-inactivated to destroy enzymatic
activity. When applied toS. mutansplanktonic cultures,
heat-inactivated OMVs still significantly inhibited the
growth of three different S. mutansstrains, including
low passage isolates, albeit to a lesser extent than native
OMVs (Fig. 4). To investigate the antibiofilm activity of
heat-inactivated OMVs,S. mutans biofilms were pre-
formed on chamber slides then treated with PBS,
100 µg/mL heat-inactivated OMVs, or 100 µg/mL native

Fig. 3 OMVs exhibit bactericidal and antibiofilm activities onS. mutans. S. mutansbiofilms were grown on chamber-slides in BMGS for three days
before treatment with(A) PBS,(B)50 µg/mL, or(C)100 µg/mL OMVs for 24 h. Following staining with LIVE/DEADBacLight fluorescent dye (SYTO
9/propidium iodide), biofilms were subjected to optical dissection using confocal microscopy. Green: total biomass. Red: dead cells. Side bars
indicate the thickness of the biofilms. Post-acquisition analyses of the fluorescent images were performed using COMSTAT 2.0. Treatments with
OMVs or PBS were compared for(D) total biofilm biomass/dead cell biomass,(E)average thickness, and(F)roughness coefficient. Roughness
coefficients of the biofilms were calculated as an indication of biofilm integrity. The results were analyzed using one-factor ANOVA. (**p< 0.01,
**** p< 0.0001, NS = not significant)
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