Vaneechoutte M, Verschraegen G, Claeys G, Weise B, Van den Abeele AM. Respiratory tract carrier rates of Moraxella (Branhamella) catarrhalis in adults and children and interpretation of the isolation of M. catarrhalis from sputum. J Clin Microbiol. 1990;28(12):2674–80.
CAS
PubMed
PubMed Central
Google Scholar
Pettigrew MM, Alderson MR, Bakaletz LO, Barenkamp SJ, Hakansson AP, Mason KM, Nokso-Koivisto J, Patel J, Pelton SI, Murphy TF. Panel 6: Vaccines. Otolaryngol Head Neck Surg. 2017;156(4_suppl):S76–87.
Article
PubMed
PubMed Central
Google Scholar
Murphy TF, Brauer AL, Grant BJ, Sethi S. Moraxella catarrhalis in chronic obstructive pulmonary disease: burden of disease and immune response. Am J Respir Crit Care Med. 2005;172(2):195–9.
Article
PubMed
PubMed Central
Google Scholar
Ruohola A, Pettigrew MM, Lindholm L, Jalava J, Raisanen KS, Vainionpaa R, Waris M, Tahtinen PA, Laine MK, Lahti E, et al. Bacterial and viral interactions within the nasopharynx contribute to the risk of acute otitis media. J Infect. 2013;66(3):247–54.
Article
PubMed
Google Scholar
Krishnamurthy A, McGrath J, Cripps AW, Kyd JM. The incidence of Streptococcus pneumoniae otitis media is affected by the polymicrobial environment particularly Moraxella catarrhalis in a mouse nasal colonisation model. Microbes Infect. 2009;11(5):545–53.
Article
CAS
PubMed
Google Scholar
Perez AC, Pang B, King LB, Tan L, Murrah KA, Reimche JL, Wren JT, Richardson SH, Ghandi U, Swords WE. Residence of Streptococcus pneumoniae and Moraxella catarrhalis within polymicrobial biofilm promotes antibiotic resistance and bacterial persistence in vivo. Pathog Dis. 2014;70(3):280–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moxon R, Bayliss C, Hood D. Bacterial contingency loci: the role of simple sequence DNA repeats in bacterial adaptation. Annu Rev Genet. 2006;40:307–33.
Article
CAS
PubMed
Google Scholar
van der Woude MW, Baumler AJ. Phase and antigenic variation in bacteria. Clin Microbiol Rev. 2004;17(3):581–611 table of contents.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tan A, Atack JM, Jennings MP, Seib KL. The capricious nature of bacterial pathogens: Phasevarions and vaccine development. Front Immunol. 2016;7:586.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lafontaine ER, Wagner NJ, Hansen EJ. Expression of the Moraxella catarrhalis UspA1 protein undergoes phase variation and is regulated at the transcriptional level. J Bacteriol. 2001;183(5):1540–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Attia AS, Hansen EJ. A conserved tetranucleotide repeat is necessary for wild-type expression of the Moraxella catarrhalis UspA2 protein. J Bacteriol. 2006;188(22):7840–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang W, Pearson MM, Attia AS, Blick RJ, Hansen EJ. A UspA2H-negative variant of Moraxella catarrhalis strain O46E has a deletion in a homopolymeric nucleotide repeat common to uspA2H genes. Infect Immun. 2007;75(4):2035–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mollenkvist A, Nordstrom T, Hallden C, Christensen JJ, Forsgren A, Riesbeck K. The Moraxella catarrhalis immunoglobulin D-binding protein MID has conserved sequences and is regulated by a mechanism corresponding to phase variation. J Bacteriol. 2003;185(7):2285–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blakeway LV, Tan A, Peak IRA, Seib KL. Virulence determinants of Moraxella catarrhalis: distribution and considerations for vaccine development. Microbiology (Reading, England). 2017;163(10):1371–84.
Article
CAS
Google Scholar
Atack JM, Tan A, Bakaletz LO, Jennings MP, Seib KL. Phasevarions of bacterial pathogens: Methylomics sheds new light on old enemies. Trends Microbiol. 2018;26(8):715–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Srikhanta YN, Maguire TL, Stacey KJ, Grimmond SM, Jennings MP. The phasevarion: a genetic system controlling coordinated, random switching of expression of multiple genes. Proc Natl Acad Sci U S A. 2005;102(15):5547–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Srikhanta YN, Dowideit SJ, Edwards JL, Falsetta ML, Wu HJ, Harrison OB, Fox KL, Seib KL, Maguire TL, Wang AH, et al. Phasevarions mediate random switching of gene expression in pathogenic Neisseria. PLoS Pathog. 2009;5(4):e1000400.
Article
PubMed
PubMed Central
CAS
Google Scholar
Srikhanta YN, Gorrell RJ, Steen JA, Gawthorne JA, Kwok T, Grimmond SM, Robins-Browne RM, Jennings MP. Phasevarion mediated epigenetic gene regulation in Helicobacter pylori. PLoS One. 2011;6(12):e27569.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jen FE, Seib KL, Jennings MP. Phasevarions mediate epigenetic regulation of antimicrobial susceptibility in Neisseria meningitidis. Antimicrob Agents Chemother. 2014;58(7):4219–21.
Article
PubMed
PubMed Central
CAS
Google Scholar
Seib KL, Pigozzi E, Muzzi A, Gawthorne JA, Delany I, Jennings MP, Rappuoli R. A novel epigenetic regulator associated with the hypervirulent Neisseria meningitidis clonal complex 41/44. FASEB J. 2011;25(10):3622–33.
Article
CAS
PubMed
Google Scholar
Atack JM, Srikhanta YN, Fox KL, Jurcisek JA, Brockman KL, Clark TA, Boitano M, Power PM, Jen FE, McEwan AG, et al. A biphasic epigenetic switch controls immunoevasion, virulence and niche adaptation in non-typeable Haemophilus influenzae. Nat Commun. 2015;6:7828.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blakeway LV, Tan A, Lappan R, Ariff A, Pickering JL, Peacock CS, Blyth CC, Kahler CM, Chang BJ, Lehmann D, et al. Moraxella catarrhalis restriction-modification systems are associated with phylogenetic lineage and disease. Genome Biol Evol. 2018;10(11):2932–46.
CAS
PubMed
PubMed Central
Google Scholar
Blakeway LV, Power PM, Jen FE, Worboys SR, Boitano M, Clark TA, Korlach J, Bakaletz LO, Jennings MP, Peak IR, et al. ModM DNA methyltransferase methylome analysis reveals a potential role for Moraxella catarrhalis phasevarions in otitis media. FASEB J. 2014;28(12):5197–207.
Article
CAS
PubMed
Google Scholar
Seib KL, Peak IR, Jennings MP. Phase variable restriction-modification systems in Moraxella catarrhalis. FEMS Immunol Med Microbiol. 2002;32(2):159–65.
CAS
PubMed
Google Scholar
Tan A, Blakeway LV, Bakaletz LO, Boitano M, Clark TA, Korlach J, Jennings MP, Peak IR, Seib KL. Complete Genome Sequence of Moraxella catarrhalis Strain CCRI-195ME, Isolated from the Middle Ear. Genome Announc. 2017;5(21):e00384-17.
Novotny LA, Mason KM, Bakaletz LO. Development of a chinchilla model to allow direct, continuous, biophotonic imaging of bioluminescent nontypeable Haemophilus influenzae during experimental otitis media. Infect Immun. 2005;73(1):609–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seib KL, Jen FE, Tan A, Scott AL, Kumar R, Power PM, Chen LT, Wu HJ, Wang AH, Hill DM, et al. Specificity of the ModA11, ModA12 and ModD1 epigenetic regulator N (6)-adenine DNA methyltransferases of Neisseria meningitidis. Nucleic Acids Res. 2015;43(8):4150–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang W, Richardson AR, Martens-Habbena W, Stahl DA, Fang FC, Hansen EJ. Identification of a repressor of a truncated denitrification pathway in Moraxella catarrhalis. J Bacteriol. 2008;190(23):7762–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang W, Kinkel T, Martens-Habbena W, Stahl DA, Fang FC, Hansen EJ. The Moraxella catarrhalis nitric oxide reductase is essential for nitric oxide detoxification. J Bacteriol. 2011;193(11):2804–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stevanin TM, Moir JW, Read RC. Nitric oxide detoxification systems enhance survival of Neisseria meningitidis in human macrophages and in nasopharyngeal mucosa. Infect Immun. 2005;73(6):3322–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang W, Reitzer L, Rasko DA, Pearson MM, Blick RJ, Laurence C, Hansen EJ. Metabolic analysis of Moraxella catarrhalis and the effect of selected in vitro growth conditions on global gene expression. Infect Immun. 2007;75(10):4959–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hall-Stoodley L, Hu FZ, Gieseke A, Nistico L, Nguyen D, Hayes J, Forbes M, Greenberg DP, Dice B, Burrows A, et al. Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media. Jama. 2006;296(2):202–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stewart V. Nitrate regulation of anaerobic respiratory gene expression in Escherichia coli. Mol Microbiol. 1993;9(3):425–34.
Article
CAS
PubMed
Google Scholar
Schreiber K, Krieger R, Benkert B, Eschbach M, Arai H, Schobert M, Jahn D. The anaerobic regulatory network required for Pseudomonas aeruginosa nitrate respiration. J Bacteriol. 2007;189(11):4310–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Okubo J, Noshiro M. Analysis of middle ear cavity gas composition by mass spectrometry. Nihon Jibiinkoka Gakkai kaiho. 1994;97(7):1181–90.
CAS
PubMed
Google Scholar
Borriello G, Werner E, Roe F, Kim AM, Ehrlich GD, Stewart PS. Oxygen limitation contributes to antibiotic tolerance of Pseudomonas aeruginosa in biofilms. Antimicrob Agents Chemother. 2004;48(7):2659–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hoopman TC, Liu W, Joslin SN, Pybus C, Sedillo JL, Labandeira-Rey M, Laurence CA, Wang W, Richardson JA, Bakaletz LO, et al. Use of the chinchilla model for nasopharyngeal colonization to study gene expression by Moraxella catarrhalis. Infect Immun. 2012;80(3):982–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hoopman TC, Liu W, Joslin SN, Pybus C, Brautigam CA, Hansen EJ. Identification of gene products involved in the oxidative stress response of Moraxella catarrhalis. Infect Immun. 2011;79(2):745–55.
Article
CAS
PubMed
Google Scholar
Casadesus J, Low DA. Programmed heterogeneity: epigenetic mechanisms in bacteria. J Biol Chem. 2013;288(20):13929–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Phillips ZN, Husna AU, Jennings MP, Seib KL, Atack JM. Phasevarions of bacterial pathogens - phase-variable epigenetic regulators evolving from restriction-modification systems. Microbiology (Reading, England). 2019;165(9):917–28.
Article
CAS
Google Scholar
Brockman KL, Jurcisek JA, Atack JM, Srikhanta YN, Jennings MP, Bakaletz LO. ModA2 phasevarion switching in nontypeable Haemophilus influenzae increases the severity of experimental otitis media. J Infect Dis. 2016;214(5):817–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Armbruster CE, Hong W, Pang B, Weimer KE, Juneau RA, Turner J, Swords WE. Indirect pathogenicity of Haemophilus influenzae and Moraxella catarrhalis in polymicrobial otitis media occurs via interspecies quorum signaling. mBio. 2010;1(3):e00102-10.
Bakaletz LO. Chinchilla as a robust, reproducible and polymicrobial model of otitis media and its prevention. Expert Rev Vaccines. 2009;8(8):1063–82.
Article
PubMed
Google Scholar
Clark TA, Murray IA, Morgan RD, Kislyuk AO, Spittle KE, Boitano M, Fomenkov A, Roberts RJ, Korlach J. Characterization of DNA methyltransferase specificities using single-molecule, real-time DNA sequencing. Nucleic Acids Res. 2012;40(4):e29.
Article
CAS
PubMed
Google Scholar
Southern E. Southern blotting. Nat Protoc. 2006;1(2):518–25.
Article
CAS
PubMed
Google Scholar
Tan A, Li WS, Verderosa AD, Blakeway LV, Tsitsi DM, Totsika M, Seib KL. Moraxella catarrhalis NucM is an entry nuclease involved in extracellular DNA and RNA degradation, cell competence and biofilm scaffolding. Sci Rep. 2019;9(1):2579.
Brockson ME, Novotny LA, Jurcisek JA, McGillivary G, Bowers MR, Bakaletz LO. Respiratory syncytial virus promotes Moraxella catarrhalis-induced ascending experimental otitis media. PLoS One. 2012;7(6):e40088.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mokrzan EM, Novotny LA, Brockman KL, Bakaletz LO. Antibodies against the Majority Subunit (PilA) of the Type IV Pilus of Nontypeable Haemophilus influenzae Disperse Moraxella catarrhalis from a Dual-Species Biofilm. mBio. 2018;9(6):e02423-18.