Thompson FL, Iida T, Swings J. Biodiversity of vibrios. Microbiol Mol Biol Rev. 2004;68(3):403–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Urbanczyk H, Ast JC, Higgins MJ, Carson J, Dunlap PV. Reclassification of Vibrio fischeri, Vibrio logei, Vibrio salmonicida and Vibrio wodanis as Aliivibrio fischeri gen. Nov., comb. nov., Aliivibrio logei comb. nov., Aliivibrio salmonicida comb. nov. and Aliivibrio wodanis comb. nov. Int J Syst Evol Microbiol. 2007;57(Pt 12):2823–9.
Article
CAS
PubMed
Google Scholar
Egidius E, Andersen K, Clausen E, Raa J. Cold-water vibriosis or “Hitra disease” in Norwegian salmonid farming. J Fish Dis. 1981;4(4):353–4.
Article
Google Scholar
Holm K, Strøm E, Stensvaag K, Raa J, Jørgensen T. Characteristics of a Vibrio sp. associated with the “Hitra disease” of Atlantic Salmon in Norwegian fish farms. Fish Pathology. 1985;20(2–3):125–9.
Article
Google Scholar
Egidius E, Wiik R, Andersen K, Hoof KA, Hjeltnes B. Vibrio salmonicida sp. nov., a new fish pathogen. Int J Syst Evol Microbiol. 1986;36(4):518–20.
Google Scholar
Miller MB, Bassler BL. Quorum sensing in bacteria. Annu Rev Microbiol. 2001;55:165–99.
Article
CAS
PubMed
Google Scholar
Ng WL, Bassler BL. Bacterial quorum-sensing network architectures. Annu Rev Genet. 2009;43:197–222.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruby EG. Lessons from a cooperative, bacterial-animal association: the Vibrio fischeri-Euprymna scolopes light organ symbiosis. Annu Rev Microbiol. 1996;50:591–624.
Article
CAS
PubMed
Google Scholar
Hastings JW, Nealson KH. Bacterial bioluminescence. Annu Rev Microbiol. 1977;31:549–95.
Article
CAS
PubMed
Google Scholar
Bassler BL, Wright M, Showalter RE, Silverman MR. Intercellular signalling in Vibrio harveyi: sequence and function of genes regulating expression of luminescence. Mol Microbiol. 1993;9(4):773–86.
Article
CAS
PubMed
Google Scholar
Lupp C, Ruby EG. Vibrio fischeri uses two quorum-sensing systems for the regulation of early and late colonization factors. J Bacteriol. 2005;187(11):3620–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fidopiastis PM, Miyamoto CM, Jobling MG, Meighen EA, Ruby EG. LitR, a new transcriptional activator in Vibrio fischeri, regulates luminescence and symbiotic light organ colonization. Mol Microbiol. 2002;45(1):131–43.
Article
CAS
PubMed
Google Scholar
Miyashiro T, Wollenberg MS, Cao X, Oehlert D, Ruby EG. A single qrr gene is necessary and sufficient for LuxO-mediated regulation in Vibrio fischeri. Mol Microbiol. 2010;77(6):1556–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lupp C, Ruby EG. Vibrio fischeri LuxS and AinS: comparative study of two signal synthases. J Bacteriol. 2004;186(12):3873–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miyashiro T, Ruby EG. Shedding light on bioluminescence regulation in Vibrio fischeri. Mol Microbiol. 2012;84(5):795–806.
Article
CAS
PubMed
PubMed Central
Google Scholar
Engebrecht J, Silverman M. Identification of genes and gene products necessary for bacterial bioluminescence. Proc Natl Acad Sci U S A. 1984;81(13):4154–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Verma SC, Miyashiro T. Quorum sensing in the squid-Vibrio symbiosis. Int J Mol Sci. 2013;14(7):16386–401.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hjerde E, Lorentzen MS, Holden MT, Seeger K, Paulsen S, Bason N, Churcher C, Harris D, Norbertczak H, Quail MA, et al. The genome sequence of the fish pathogen Aliivibrio salmonicida strain LFI1238 shows extensive evidence of gene decay. BMC Genomics. 2008;9:616.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hansen H, Purohit AA, Leiros HK, Johansen JA, Kellermann SJ, Bjelland AM, Willassen NP. The autoinducer synthases LuxI and AinS are responsible for temperature-dependent AHL production in the fish pathogen Aliivibrio salmonicida. BMC Microbiol. 2015;15:69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fidopiastis PM, Sørum H, Ruby EG. Cryptic luminescence in the cold-water fish pathogen Vibrio salmonicida. Arch Microbiol. 1999;171(3):205–9.
Article
CAS
PubMed
Google Scholar
Hmelo LR. Quorum sensing in marine microbial environments. Annu Rev Mar Sci. 2017;9:257–81.
Article
Google Scholar
Bjelland AM, Sørum H, Tegegne DA, Winther-Larsen HC, Willassen NP, Hansen H. LitR of Vibrio salmonicida is a salinity-sensitive quorum-sensing regulator of phenotypes involved in host interactions and virulence. Infect Immun. 2012;80(5):1681–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Borukhov S, Nudler E. RNA polymerase holoenzyme: structure, function and biological implications. Curr Opin Microbiol. 2003;6(2):93–100.
Article
CAS
PubMed
Google Scholar
Davis MC, Kesthely CA, Franklin EA, MacLellan SR. The essential activities of the bacterial sigma factor. Can J Microbiol. 2017;63(2):89–99.
Article
CAS
PubMed
Google Scholar
Tripathi L, Zhang Y, Lin Z. Bacterial sigma factors as targets for engineered or synthetic transcriptional control. Front Bioeng Biotechnol. 2014;2:33.
Article
PubMed
PubMed Central
Google Scholar
Boyd EF, Carpenter MR, Chowdhury N, Cohen AL, Haines-Menges BL, Kalburge SS, Kingston JJ, Lubin JB, Ongagna-Yhombi SY, Whitaker WB. Post-genomic analysis of members of the family Vibrionaceae. Microbiol Spectr. 2015;3:5.
Article
Google Scholar
Mandel MJ, Stabb EV, Ruby EG. Comparative genomics-based investigation of resequencing targets in Vibrio fischeri: focus on point miscalls and artefactual expansions. BMC Genomics. 2008;9:138.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cao X, Studer SV, Wassarman K, Zhang Y, Ruby EG, Miyashiro T. The novel sigma factor-like regulator RpoQ controls luminescence, chitinase activity, and motility in Vibrio fischeri. mBio. 2012;3:e00285–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paget MS, Helmann JD. The sigma70 family of sigma factors. Genome Biol. 2003;4(1):203.
Article
PubMed
PubMed Central
Google Scholar
Zhao JJ, Chen C, Zhang LP, Hu CQ. Cloning, identification, and characterization of the rpoS-like sigma factor rpoX from Vibrio alginolyticus. J Biomed Biotechnol. 2009;2009:126986.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hansen H, Bjelland AM, Ronessen M, Robertsen E, Willassen NP. LitR is a repressor of syp genes and has a temperature-sensitive regulatory effect on biofilm formation and colony morphology in Vibrio (Aliivibrio) salmonicida. Appl Environ Microbiol. 2014;80(17):5530–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stabb EV, Ruby EG. RP4-based plasmids for conjugation between Escherichia coli and members of the Vibrionaceae. Methods Enzymol. 2002;358:413–26.
Article
CAS
PubMed
Google Scholar
Miyashiro T, Klein W, Oehlert D, Cao X, Schwartzman J, Ruby EG. The N-acetyl-D-glucosamine repressor NagC of Vibrio fischeri facilitates colonization of Euprymna scolopes. Mol Microbiol. 2011;82(4):894–903.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shubeita HE, Sambrook JF, McCormick AM. Molecular cloning and analysis of functional cDNA and genomic clones encoding bovine cellular retinoic acid-binding protein. Proc Natl Acad Sci U S A. 1987;84(16):5645–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Milton DL, O'Toole R, Horstedt P, Wolf-Watz H. Flagellin a is essential for the virulence of Vibrio anguillarum. J Bacteriol. 1996;178(5):1310–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lim B, Beyhan S, Meir J, Yildiz FH. Cyclic-diGMP signal transduction systems in Vibrio cholerae: modulation of rugosity and biofilm formation. Mol Microbiol. 2006;60(2):331–48.
Article
CAS
PubMed
Google Scholar
Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406–25.
CAS
Google Scholar
Yildiz FH, Liu XS, Heydorn A, Schoolnik GK. Molecular analysis of rugosity in a Vibrio cholerae O1 El Tor phase variant. Mol Microbiol. 2004;53(2):497–515.
Article
CAS
PubMed
Google Scholar
Yildiz FH, Schoolnik GK. Vibrio cholerae O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. Proc Natl Acad Sci U S A. 1999;96(7):4028–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Casper-Lindley C, Yildiz FH. VpsT is a transcriptional regulator required for expression of vps biosynthesis genes and the development of rugose colonial morphology in Vibrio cholerae O1 El Tor. J Bacteriol. 2004;186(5):1574–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Utada AS, Bennett RR, Fong JCN, Gibiansky ML, Yildiz FH, Golestanian R, Wong GCL. Vibrio cholerae use pili and flagella synergistically to effect motility switching and conditional surface attachment. Nat Commun. 2014;5:4913.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wadhams GH, Armitage JP. Making sense of it all: bacterial chemotaxis. Nat Rev Mol Cell Biol. 2004;5(12):1024–37.
Article
CAS
PubMed
Google Scholar
Marles-Wright J, Lewis RJ. Stress responses of bacteria. Curr Opin Struct Biol. 2007;17(6):755–60.
Article
CAS
PubMed
Google Scholar
Aertsen A, Michiels CW. Stress and how bacteria cope with death and survival. Crit Rev Microbiol. 2004;30(4):263–73.
Article
CAS
PubMed
Google Scholar
Joelsson A, Kan B, Zhu J. Quorum sensing enhances the stress response in Vibrio cholerae. Appl Environ Microbiol. 2007;73(11):3742–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ringgaard S, Hubbard T, Mandlik A, Davis BM, Waldor MK. RpoS and quorum sensing control expression and polar localization of Vibrio cholerae chemotaxis cluster III proteins in vitro and in vivo. Mol Microbiol. 2015;97(4):660–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weber B, Croxatto A, Chen C, Milton DL. RpoS induces expression of the Vibrio anguillarum quorum-sensing regulator VanT. Microbiology. 2008;154(Pt 3):767–80.
Article
CAS
PubMed
Google Scholar
Tian Y, Wang Q, Liu Q, Ma Y, Cao X, Zhang Y. Role of RpoS in stress survival, synthesis of extracellular autoinducer 2, and virulence in Vibrio alginolyticus. Arch Microbiol. 2008;190(5):585–94.
Article
CAS
PubMed
Google Scholar
Hjerde E, Karlsen C, Sørum H, Parkhill J, Willassen NP, Thomson NR. Co-cultivation and transcriptome sequencing of two co-existing fish pathogens Moritella viscosa and Aliivibrio wodanis. BMC Genomics. 2015;16:447.
Article
CAS
PubMed
PubMed Central
Google Scholar
Flemming HC, Neu TR, Wozniak DJ. The EPS matrix: the “house of biofilm cells”. J Bacteriol. 2007;189(22):7945–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guan J, Xiao X, Xu S, Gao F, Wang J, Wang T, Song Y, Pan J, Shen X, Wang Y. Roles of RpoS in Yersinia pseudotuberculosis stress survival, motility, biofilm formation and type VI secretion system expression. J Microbiol. 2015;53(9):633–42.
Article
CAS
PubMed
Google Scholar
Corona-Izquierdo FP, Membrillo-Hernandez J. A mutation in rpoS enhances biofilm formation in Escherichia coli during exponential phase of growth. FEMS Microbiol Lett. 2002;211(1):105–10.
Article
CAS
PubMed
Google Scholar
Sheldon JR, Yim MS, Saliba JH, Chung WH, Wong KY, Leung KT. Role of rpoS in Escherichia coli O157:H7 strain H32 biofilm development and survival. Appl Environ Microbiol. 2012;78(23):8331–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Adams JL, McLean RJ. Impact of rpoS deletion on Escherichia coli biofilms. Appl Environ Microbiol. 1999;65(9):4285–7.
CAS
PubMed
PubMed Central
Google Scholar
Ito A, May T, Kawata K, Okabe S. Significance of rpoS during maturation of Escherichia coli biofilms. Biotechnol Bioeng. 2008;99(6):1462–71.
Article
CAS
PubMed
Google Scholar
Guttenplan SB, Kearns DB. Regulation of flagellar motility during biofilm formation. FEMS Microbiol Rev. 2013;37(6):849–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lemon KP, Higgins DE, Kolter R. Flagellar motility is critical for Listeria monocytogenes biofilm formation. J Bacteriol. 2007;189(12):4418–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
O'Toole GA, Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol. 1998;30(2):295–304.
Article
CAS
PubMed
Google Scholar
Klausen M, Heydorn A, Ragas P, Lambertsen L, Aaes-Jørgensen A, Molin S, Tolker-Nielsen T. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol. 2003;48(6):1511–24.
Article
CAS
PubMed
Google Scholar
Watnick PI, Kolter R. Steps in the development of a Vibrio cholerae El Tor biofilm. Mol Microbiol. 1999;34(3):586–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Malamud F, Torres PS, Roeschlin R, Rigano LA, Enrique R, Bonomi HR, Castagnaro AP, Marano MR, Vojnov AA. The Xanthomonas axonopodis pv. citri flagellum is required for mature biofilm and canker development. Microbiology. 2011;157(Pt 3):819–29.
Article
CAS
PubMed
Google Scholar
Merritt PM, Danhorn T, Fuqua C. Motility and chemotaxis in Agrobacterium tumefaciens surface attachment and biofilm formation. J Bacteriol. 2007;189(22):8005–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wood TK, Gonzalez Barrios AF, Herzberg M, Lee J. Motility influences biofilm architecture in Escherichia coli. Appl Microbiol Biotechnol. 2006;72(2):361–7.
Article
CAS
PubMed
Google Scholar
Macnab RM. How bacteria assemble flagella. Annu Rev Microbiol. 2003;57:77–100.
Article
CAS
PubMed
Google Scholar
Simon R, Priefer U, Puhler A. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria Nat. Biotech. 1983;1:784–91.
Article
CAS
Google Scholar
Messing J, Crea R, Seeburg PH. A system for shotgun DNA sequencing. Nucleic Acids Res. 1981;9(2):309–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dunn AK, Millikan DS, Adin DM, Bose JL, Stabb EV. New rfp- and pES213-derived tools for analyzing symbiotic Vibrio fischeri reveal patterns of infection and lux expression in situ. Appl Environ Microbiol. 2006;72(1):802–10.
Article
CAS
PubMed
PubMed Central
Google Scholar