Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol. 2004;2(2):95–108.
Article
CAS
PubMed
Google Scholar
O'Toole G, Kaplan HB, Kolter R. Biofilm formation as microbial development. Annu Rev Microbiol. 2000;54:49–79.
Article
PubMed
Google Scholar
Ross P, Weinhouse H, Aloni Y, Michaeli D, Weinberger-Ohana P, Mayer R, Braun S, de Vroom E, van der Marel GA, van Boom JH, et al. Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature. 1987;325:279–81.
Article
CAS
PubMed
Google Scholar
Jenal U. Cyclic di-guanosine-monophosphate comes of age: a novel secondary messenger involved in modulating cell surface structures in bacteria? Curr Opin Microbiol. 2004;7(2):185–91.
Article
CAS
PubMed
Google Scholar
Simm R, Morr M, Kader A, Nimtz M, Römling U. GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol. 2004;53:1123–34.
Article
CAS
PubMed
Google Scholar
Römling U, Gomelsky M, Galperin MY. c-di-GMP: The dawning of a novel bacterial signalling system. Mol Microbiol. 2005;57:629–39.
Article
PubMed
Google Scholar
Hickman JW, Tifrea DF, Harwood CS. A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc Natl Acad Sci U S A. 2005;102(40):14422–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Malone JG, Williams R, Christen M, Jenal U, Spiers AJ, Rainey PB. The structure-function relationship of WspR, a Pseudomonas fluorescens response regulator with a GGDEF output domain. Microbiology. 2007;153(Pt 4):980–94.
Article
CAS
PubMed
Google Scholar
Paul R, Weiser S, Amiot NC, Chan C, Schirmer T, Giese B, Jenal U. Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. Genes Dev. 2004;18(6):715–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ryjenkov DA, Tarutina M, Moskvin OV, Gomelsky M. Cyclic diguanylate is a ubiquitous signaling molecule in Bacteria: insights into biochemistry of the GGDEF protein domain. J Bacteriol. 2005;187(5):1792–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Christen M, Christen B, Folcher M, Schauerte A, Jenal U. Identification and characterization of a cyclic di-GMP-specific phosphodiesterase and its allosteric control by GTP. J Biol Chem. 2005;280(35):30829–37.
Article
CAS
PubMed
Google Scholar
Schmidt AJ, Ryjenkov DA, Gomelsky M. The ubiquitous protein domain EAL is a cyclic diguanylate-specific phosphodiesterase: enzymatically active and inactive EAL domains. J Bacteriol. 2005;187(14):4774–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ryan RP, Fouhy Y, Lucey JF, Crossman LC, Spiro S, He YW, Zhang LH, Heeb S, Camara M, Williams P, et al. Cell-cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. Proc Natl Acad Sci U S A. 2006;103:6712–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Galperin MY, Nikolskaya AN, Koonin EV. Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol Lett. 2001;203(1):11–21.
Article
CAS
PubMed
Google Scholar
Galperin MY. Bacterial signal transduction network in a genomic perspective. Environ Microbiol. 2004;6(6):552–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Römling U, Galperin MY, Gomelsky M. Cyclic di-GMP: the First 25 Years of a Universal Bacterial Second Messenger. Microbiol Mol Biol Rev. 2013;77(1):1–52.
Article
PubMed
PubMed Central
Google Scholar
Jonas K, Melefors O, Römling U. Regulation of c-di-GMP metabolism in biofilms. Future Microbiol. 2009;4:341–58.
Article
CAS
PubMed
Google Scholar
Römling U. Great times for small molecules: c-di-AMP, a second messenger candidate in Bacteria and Archaea. Sci Signal. 2008;1(33):e39.
Article
Google Scholar
Römling U, Amikam D. Cyclic di-GMP as a second messenger. Curr Opin Microbiol. 2006;9(2):218–28.
Article
PubMed
Google Scholar
Kader A, Simm R, Gerstel U, Morr M, Römling U. Hierarchical involvement of various GGDEF domain proteins in rdar morphotype development of Salmonella enterica serovar Typhimurium. Mol Microbiol. 2006;60:602–16.
Article
CAS
PubMed
Google Scholar
Garcia B, Latasa C, Solano C, Portillo FG, Gamazo C, Lasa I. Role of the GGDEF protein family in Salmonella cellulose biosynthesis and biofilm formation. Mol Microbiol. 2004;54(1):264–77.
Article
CAS
PubMed
Google Scholar
Römling U, Rohde M, Olsen A, Normark S, Reinköster J. AgfD, the checkpoint of multicellular and aggregative behaviour in Salmonella typhimurium regulates at least two independent pathways. Mol Microbiol. 2000;36(1):10–23.
Article
PubMed
Google Scholar
Gerstel U, Römling U. The csgD promoter, -control unit for biofilm formation in Salmonella typhimurium-. Res Microbiol. 2003;154:659–67.
Article
CAS
PubMed
Google Scholar
Gerstel U, Römling U. Oxygen tension and nutrient starvation are major signals that regulate agfD promoter activity and expression of the multicellular morphotype in Salmonella typhimurium. Environ Microbiol. 2001;3(10):638–48.
Article
CAS
PubMed
Google Scholar
Gerstel U, Park C, Römling U. Complex regulation of csgD promoter activity by global regulatory proteins. Mol Microbiol. 2003;49(3):639–54.
Article
CAS
PubMed
Google Scholar
Boehm A, Vogel J. The csgD mRNA as a hub for signal integration via multiple small RNAs. Mol Microbiol. 2012;84(1):1–5.
Article
CAS
PubMed
Google Scholar
Holmqvist E, Reimegård J, Steerk M, Grantcharova N, Römling U, Wagner EGH. Two antisense RNAs target the transcriptional regulator CsgD to inhibit curli synthesis. Embo J. 2010;29:1840–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Monteiro C, Papenfort K, Hentrich K, Ahmad I, Le Guyon S, Reimann R, Grantcharova N, Romling U. Hfq and Hfq-dependent small RNAs are major contributors to multicellular development in Salmonella enterica serovar Typhimurium. RNA Biol. 2012;9(4):489–502.
Zakikhany K, Harrington CR, Nimtz M, Hinton JC, Römling U. Unphosphorylated CsgD controls biofilm formation in Salmonella enterica serovar Typhimurium. Mol Microbiol. 2010;77(3):771–86.
Article
CAS
PubMed
Google Scholar
Ahmad I, Lamprokostopoulou A, Le Guyon S, Streck E, Peters V, Barthel M, Hardt W-D, Römling U. Complex c-di-GMP signaling networks mediate the transition between virulence properties and biofilm formation in Salmonella enterica serovar Typhimurium. PLoS One. 2011;6:e28351.
Article
CAS
PubMed
PubMed Central
Google Scholar
Simm R, Lusch A, Kader A, Andersson M, Römling U. Role of EAL-containing proteins in multicellular behavior of Salmonella enterica serovar Typhimurium. J Bacteriol. 2007;189(9):3613–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morgan JL, McNamara JT, Zimmer J. Mechanism of activation of bacterial cellulose synthase by cyclic di-GMP. Nat Struct Mol Biol. 2014;21(5):489–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A. 2000;97(12):6640–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmieger H. Phage P22-mutants with increased or decreased transduction abilities. Mol Gen Genet. 1972;119(1):75–88.
Article
CAS
PubMed
Google Scholar
Blank K, Hensel M, Gerlach RG. Rapid and highly efficient method for scarless mutagenesis within the Salmonella enterica chromosome. PLoS One. 2011;6(1):e15763.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gerstel U, Kolb A, Römling U. Regulatory components at the csgD promoter – additional roles for OmpR and integration host factor and role of the 5′ untranslated region. FEMS Microbiol Lett. 2006;261(1):109–17.
Article
CAS
PubMed
Google Scholar
Zogaj X, Nimtz M, Rohde M, Bokranz W, Römling U. The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol. 2001;39(6):1452–63.
Article
CAS
PubMed
Google Scholar
Miller J. Experiments in Molecular Genetics. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 1972.
Google Scholar
Solano C, Garcia B, Latasa C, Toledo-Arana A, Zorraquino V, Valle J, Casals J, Pedroso E, Lasa I. Genetic reductionist approach for dissecting individual roles of GGDEF proteins within the c-di-GMP signaling network in Salmonella. Proc Natl Acad Sci U S A. 2009;106(19):7997–8002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Le Guyon S, Simm R, Rhen M, Römling U. Dissecting the c-di-GMP signaling network regulating motility in Salmonella enterica serovar Typhimurium. Environ Microbiol. 2014. n/a-n/a.
Simm R, Remminghorst U, Ahmad I, Zakikhany K, Römling U. A Role for the EAL-Like Protein STM1344 in Regulation of CsgD Expression and Motility in Salmonella enterica Serovar Typhimurium. J Bacteriol. 2009;191(12):3928–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ahmad I, Wigren E, Le Guyon S, Vekkeli S, Blanka A, el Mouali Y, Anwar N, Chuah ML, Lünsdorf H, Frank R, et al. The EAL-like protein STM1697 regulates virulence phenotypes, motility and biofilm formation in Salmonella typhimurium. Mol Microbiol. 2013;90(6):1216–32.
Article
CAS
PubMed
Google Scholar
Shang F, Xue T, Sun H, Xing L, Zhang S, Yang Z, Zhang L, Sun B. The Staphylococcus aureus GGDEF domain-containing protein, GdpS, influences protein A gene expression in a cyclic diguanylic acid-independent manner. Infect Immun. 2009;77(7):2849–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holland LM, O'Donnell ST, Ryjenkov DA, Gomelsky L, Slater SR, Fey PD, Gomelsky M, O'Gara JP. A staphylococcal GGDEF domain protein regulates biofilm formation independently of c-di-GMP. J Bacteriol. 2008;190(15):5178–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tschowri N, Lindenberg S, Hengge R. Molecular function and potential evolution of the biofilm-modulating blue light-signalling pathway of Escherichia coli. Mol Microbiol. 2012;85(5):893–906.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tschowri N, Busse S, Hengge R. The BLUF-EAL protein YcgF acts as a direct anti-repressor in a blue-light response of Escherichia coli. Genes Dev. 2009;23(4):522–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ferreira RB, Antunes LC, Greenberg EP, McCarter LL. Vibrio parahaemolyticus ScrC modulates cyclic dimeric GMP regulation of gene expression relevant to growth on surfaces. J Bacteriol. 2008;190(3):851–60.
Article
CAS
PubMed
Google Scholar
Bharati BK, Sharma IM, Kasetty S, Kumar M, Mukherjee R, Chatterji D. A full length bifunctional protein involved in c-di-GMP turnover is required for long term survival under nutrient starvation in Mycobacterium smegmatis. Microbiology. 2012;158(Pt 6):1415–27.
Article
CAS
PubMed
Google Scholar
Tuckerman JR, Gonzalez G, Gilles-Gonzalez MA. Cyclic di-GMP activation of polynucleotide phosphorylase signal-dependent RNA processing. J Mol Biol. 2011;407(5):633–9.
Article
CAS
PubMed
Google Scholar
Lindenberg S, Klauck G, Pesavento C, Klauck E, Hengge R. The EAL domain protein YciR acts as a trigger enzyme in a c-di-GMP signalling cascade in E. coli biofilm control. EMBO J. 2013;32(14):2001–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brown PK, Dozois CM, Nickerson CA, Zuppardo A, Terlonge J, Curtiss 3rd R. MlrA, a novel regulator of curli (AgF) and extracellular matrix synthesis by Escherichia coli and Salmonella enterica serovar Typhimurium. Mol Microbiol. 2001;41(2):349–63.
Article
CAS
PubMed
Google Scholar
Beyhan S, Odell LS, Yildiz FH. Identification and characterization of cyclic diguanylate signaling systems controlling rugosity in Vibrio cholerae. J Bacteriol. 2008;190(22):7392–405.
Article
CAS
PubMed
PubMed Central
Google Scholar
Srivastava D, Harris RC, Waters CM. Integration of cyclic di-GMP and quorum sensing in the control of vpsT and aphA in Vibrio cholerae. J Bacteriol. 2011;193(22):6331–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shikuma NJ, Fong JC, Yildiz FH. Cellular levels and binding of c-di-GMP control subcellular localization and activity of the Vibrio cholerae transcriptional regulator VpsT. PLoS Pathog. 2012;8(5):e1002719.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wada T, Morizane T, Abo T, Tominaga A, Inoue-Tanaka K, Kutsukake K. An EAL-domain protein YdiV acts as an anti-FlhD4C2 factor responsible for nutritional control of the flagellar regulon in Salmonella enterica serovar Typhimurium. J Bacteriol. 2011;193(7):1600–11.
Article
CAS
PubMed
PubMed Central
Google Scholar