Barb AW, Zhou P. Mechanism and inhibition of LpxC: an essential zinc-dependent deacetylase of bacterial lipid A synthesis. Curr Pharm Biotechnol. 2008;9:9–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Narayana JL, Chen JY. Antimicrobial peptides: Possible anti-infective agents. Peptides. 2015;72:88–94.
Article
Google Scholar
Brogden KA, Ackermann M, McCray Jr PB, Tack BF. Antimicrobial peptides in animals and their role in host defences. Int J Antimicrob Agents. 2003;22:465–78.
Article
CAS
PubMed
Google Scholar
Hancock REW, Chapple DS. Peptide antibiotics. Antimicrob Agents Chemother. 1999;43:1317–23.
CAS
PubMed
PubMed Central
Google Scholar
Nuri R, Shprung T, Shai Y. Defensive remodeling: How bacterial surface properties and biofilm formation promote resistance to antimicrobial peptides. Biochim Biophys Acta. 2015;11:3089–100.
Article
Google Scholar
Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev. 2003;55:27–55.
Article
CAS
PubMed
Google Scholar
Giuliani A, Pirri G, Bozzi A, Di Giulio A, Aschi M, Rinaldi AC. Antimicrobial peptides: natural templates for synthetic membrane-active compounds. Cell Mol Life Sci. 2008;65:2450–60.
Article
CAS
PubMed
Google Scholar
Zhang L, Dhillon P, Yan H, Farmer S, Hancock REW. Interactions of bacterial cationic peptide antibiotics with outer and cytoplasmic membranes of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2000;44:3317–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Defez C, Fabbro-Peray P, Bouziges N, Gouby A, Mahamat A, Daurès JP, et al. Risk factors for multidrug-resistant Pseudomonas aeruginosa nosocomial infection. J Hosp Infect. 2004;57:209–16.
Article
CAS
PubMed
Google Scholar
Bodey GP, Bolivar R, Fainstein V, Jadeja L. Infections caused by Pseudomonas aeruginosa. Rev Infect Dis. 1983;5:279–313.
Article
CAS
PubMed
Google Scholar
Percival SL, Hill KE, Williams DW, Hooper SJ, Thomas DW, Costerton JW. A review of the scientific evidence for biofilms in wounds. Wound Repair Regen. 2012;20:647–57.
Article
PubMed
Google Scholar
Xu Z, Gao Y, He J, Xu W, Jiang M, Jin H. Effects of azithromycin on Pseudomonas aeruginosa isolates from catheter-associated urinary tract infection. Exp Ther Med. 2014;9:569–72.
CAS
PubMed
PubMed Central
Google Scholar
Eckert R, Keith MB, Greenberg EP, Qi F, Yarbrough DK, He J, et al. Enhancement of antimicrobial activity against Pseudomonas aeruginosa by coadministration of G10KHc and tobramycin. Antimicrob Agents Chemother. 2006;50:3833–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peluso L, de Luca C, Bozza S, Leonardi A, Giovannini G, Lavorgna A, et al. Protection against Pseudomonas aeruginosa lung infection in mice by recombinant OprF-pulsed dendritic cell immunization. BMC Microbiol. 2010;10:9.
Article
PubMed
PubMed Central
Google Scholar
Murray TS, Egan M, Kazmierczak BI. Pseudomonas aeruginosa chronic colonization in cystic fibrosis patients. Curr Opin Pediatr. 2007;19:83–8.
Article
PubMed
Google Scholar
Ciofu O, Hansen CR, Hoiby N. Respiratory bacterial infections in cystic fibrosis. Curr Opin Pulm Med. 2013;19:251–8.
Article
PubMed
Google Scholar
Davies JC. Pseudomonas aeruginosa in cystic fibrosis: pathogenesis and persistence. Paediatr Respir Rev. 2002;3:128–34.
Article
PubMed
Google Scholar
Zhang L, Parente J, Harris SM, Woods DE, Hancock RE, Falla TJ. Antimicrobial peptide therapeutics for cystic fibrosis. Antimicrob Agents Chemother. 2005;49:2921–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun H, Fujitani S, Quintiliani R, Yu VL. Pneumonia due to Pseudomonas aeruginosa: part II: antimicrobial resistance, pharmacodynamic concepts, and antibiotic therapy convert from a non-mucoid to a mucoid state. Chest. 2011;139:1172–85.
Article
PubMed
Google Scholar
Pritt B, O’Brien L, Winn W. Mucoid Pseudomonas in cystic fibrosis. Am J Clin Pathol. 2007;128(1):32–4.
Article
PubMed
Google Scholar
Hentzer M, Teitzel GM, Balzer GJ, Heydorn A, Molin S, Givskov M, et al. Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol. 2001;183:5395–401.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Z, Kosorok MR, Farrell PM, Laxova A, West SE, Green CG, et al. Longitudinal development of mucoid Pseudomonas aeruginosa infection and lung disease progression in children with cystic fibrosis. JAMA. 2005;293:581–8.
Article
CAS
PubMed
Google Scholar
Fegan M, Francis P, Hayward AC, Davis GH, Fuerst JA. Phenotypic conversion of Pseudomonas aeruginosa in cystic fibrosis. J Clin Microbiol. 1990;28:1143–6.
CAS
PubMed
PubMed Central
Google Scholar
Lovewell RR, Patankar YR, Berwin B. Mechanisms of phagocytosis and host clearance of Pseudomonas aeruginosa. Am J Physiol Lung Cell Mol Physiol. 2014;306:591–603.
Article
Google Scholar
Stuart B, Lin JH, Mogayzel Jr PJ. Early eradication of Pseudomonas aeruginosa in patients with cystic fibrosis. Paediatr Respir Rev. 2010;11:177–84.
Article
PubMed
PubMed Central
Google Scholar
Kaur H, Garg A, Raghava GP. PEPstr: a de novo method for tertiary structure prediction of small bioactive peptides. Protein Pept Lett. 2007;14:626–31.
Article
CAS
PubMed
Google Scholar
ICLSI. Methods for Dilution Antimicrobial Susceptibility. Tests for Bacteria That Grow Aerobically; Approved Standard—Ninth Edition. CLSI document M07-A9. Wayne: Clinical and Laboratory Standards Institute; 2012.
Dosunmu E, Chaudhari AA, Singh SR, Dennis VA, Pillai SR. Silver-coated carbon nanotubes downregulate the expression of Pseudomonas aeruginosa virulence genes: a potential mechanism for their antimicrobial effect. Int J Nanomedicine. 2015;10:5025–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peterson LR, Shanholtzer CJ. Tests for bactericidal effects of antimicrobial agents: technical performance and clinical relevance. Clin Microbiol Rev. 1992;5:420–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Institute, C.a.L.S. Methods for determining bactericidal activity of antimicrobial agents. approved guideline; M26-A. Wayne: NCCLS; 1999.
Google Scholar
Yilma AN, Singh SR, Dixit S, Dennis VA. Anti-inflammatory effects of silver-polyvinyl pyrrolidone (Ag-PVP) nanoparticles in mouse macrophages infected with live Chlamydia trachomatis. Int J Nanomedicine. 2013;8:2421–32.
PubMed
PubMed Central
Google Scholar
Cheng M, Huang JX, Ramu S, Butler MS, Cooper MA. Ramoplanin at bactericidal concentrations induces bacterial membrane depolarization in Staphylococcus aureus. Antimicrob Agents Chemother. 2014;58:6819–27.
Article
PubMed
PubMed Central
Google Scholar
Gautam A, Dixit S, Embers M, Gautam R, Philipp MT, Singh SR, et al. Different patterns of expression and of IL-10 modulation of inflammatory mediators from macrophages of Lyme disease-resistant and -susceptible mice. PLoS One. 2012;7:e43860.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hemamalini R, Khare S. A proteomic approach to understand the role of the outer membrane porins in the organic solvent-tolerance of Pseudomonas aeruginosa PseA. PLoS One. 2014;9:e103788.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rao SS, Ketha VKM, Atreya CD. A Peptide derived from phage Display Library Exhibits Antimicrobial Activity against E. coli and Pseudomonas aeruginosa. PLoS One. 2013;8:e56081.
Article
CAS
Google Scholar
Emeline B, Gwendoline G, Alexis B, Manjeet B, Olivier M, Julien V, et al. Transcription of the oprF gene of Pseudomonas aeruginosa is dependent mainly on the SigX sigma factor and is sucrose induced. J Bacteriol. 2012;194:4301–11.
Article
Google Scholar
Hartmann M, Berditsch M, Hawecker J, Ardakani MF, Gerthsen D, Ulrich AS. Damage of the bacterial cell envelope by antimicrobial peptides gramicidin S and PGLa as revealed by transmission and scanning electron microscopy. Antimicrob Agents Chemother. 2010;54:3132–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu G, Wu H, Fan X, Zhao R, Li X, Wang S, et al. Selective toxicity of antimicrobial peptide S-thanatin on bacteria. Peptides. 2010;31:1669–73.
Article
CAS
PubMed
Google Scholar
Mahera S, McCleana S. Investigation of the cytotoxicity of eukaryotic and prokaryotic antimicrobial peptides in intestinal epithelial cells invitro. Biochem Pharmacol. 2006;71:1289–98.
Article
Google Scholar
Nekhotiaeva N, Elmquist A, Rajarao GK, Hällbrink M, Langel U, Good L. Cell entry and antimicrobial properties of eukaryotic cell-penetrating peptides. FASEB J. 2004;18:394–6.
CAS
PubMed
Google Scholar
Guilhelmelli F, Vilela N, Albuquerque P, Derengowski Lda S, Silva-Pereira I, Kyaw CM. Antibiotic development challenges: the various mechanisms of action of antimicrobial peptides and of bacterial resistance. Front Microbiol. 2013;4:353.
Article
PubMed
PubMed Central
Google Scholar
Yount NY, Yeaman MR. Peptide antimicrobials: cell wall as a bacterial target. Ann N Y Acad Sci. 2013;1277:127–38.
Article
CAS
PubMed
Google Scholar
Koo SP, Bayer AS, Yeaman MR. Diversity in antistaphylococcal mechanisms among membrane-targeting antimicrobial peptides. Infect Immun. 2001;69:4916–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Funken H, Bartels KM, Wilhelm S, Brocker M, Bott M, Bains M, et al. Specific association of lectin LecB with the surface of Pseudomonas aeruginosa: role of outer membrane protein OprF. PLoS One. 2012;7:e46857.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoon SS, Hennigan RF, Hilliard GM, Ochsner UA, Parvatiyar K, Kamani MC, et al. Pseudomonas aeruginosa anaerobic respiration in biofilms: relationships to cystic fibrosis pathogenesis. Dev Cell. 2002;3:593–603.
Article
CAS
PubMed
Google Scholar
Wessel AK, Liew J, Kwon T, Marcotte EM, Whiteley M. Role of Pseudomonas aeruginosa peptidoglycan-associated outer membrane proteins in vesicle formation. J Bacteriol. 2013;195:213–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roberts AE, Maddocks SE, Cooper RA. Manuka honey is bactericidal against Pseudomonas aeruginosa and results in differential expression of oprF and algD. Microbiology. 2012;158:3005–13.
Article
CAS
PubMed
Google Scholar
Tashiro Y, Nomura N, Nakao R, Senpuku H, Kariyama R, Kumon H, et al. Opr86 Is Essential for Viability and Is a Potential Candidate for a Protective Antigen against Biofilm Formation by Pseudomonas aeruginosa. J Bacteriol. 2008;190:3969–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Winsor GL, Lam DK, Fleming L, Lo R, Whiteside MD, Yu NY, et al. Pseudomonas Genome Database: improved comparative analysis and population genomics capability for Pseudomonas genomes. Nucleic Acids Res. 2011;39:D596–600.
Article
CAS
PubMed
Google Scholar
Ghosal A, Nielsen PE. Potent antibacterial antisense peptide-peptide nucleic acid conjugates against Pseudomonas aeruginosa. Nucleic Acid Ther. 2012;22:323–34.
CAS
PubMed
PubMed Central
Google Scholar
Duggan BM, Roca A, Zhang YM. (1) H, (1)(3) C and (1)(5) N assignments of the holo-acyl carrier protein of Pseudomonas aeruginosa. Biomol NMR Assign. 2013;7:225–8.
Article
CAS
PubMed
Google Scholar
Yoon MY, Lee K, Park Y, Yoon SS. Contribution of cell elongation to the biofilm formation of Pseudomonas aeruginosa during anaerobic respiration. PLoS One. 2011;6:e16105.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paradis-Bleau C, Sanschagrin F, Levesque RC. Peptide inhibitors of the essential cell division protein FtsA. Protein Eng Des Sel. 2005;18:85–91.
Article
CAS
PubMed
Google Scholar
Tsutsumi Y, Tomita H, Tanimoto K. Identification of novel genes responsible for overexpression of ampC in Pseudomonas aeruginosa PAO1. Antimicrob Agents Chemother. 2013;57:5987–93.
Article
PubMed
PubMed Central
Google Scholar
Balasubramanian D, Schneper L, Merighi M, Smith R, Narasimhan G, Lory S, et al. The regulatory repertoire of Pseudomonas aeruginosa AmpC ss-lactamase regulator AmpR includes virulence genes. PLoS One. 2012;7:e34067.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang D, Seeve C, Pierson LS, Pierson EA. Transcriptome profiling reveals links between ParS/ParR, MexEF-OprN, and quorum sensing in the regulation of adaptation and virulence in Pseudomonas aeruginosa. BMC Genomics. 2013;14:618.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jimenez PN, Koch G, Thompson JA, Xavier KB, Cool RH, Quax WJ. The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol Mol Biol Rev. 2012;76:46–65.
Article
CAS
PubMed
Google Scholar