Rasmussen S, Allentoft ME, Nielsen K, Orlando L, Sikora M, Sjogren KG, Pedersen AG, Schubert M, Van Dam A, Kapel CM, et al. Early divergent strains of Yersinia pestis in Eurasia 5,000 years ago. Cell. 2015;163(3):571–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Erickson DL, Jarrett CO, Wren BW, Hinnebusch BJ. Serotype differences and lack of biofilm formation characterize Yersinia pseudotuberculosis infection of the Xenopsylla cheopis flea vector of Yersinia pestis. J Bacteriol. 2006;188(3):1113–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou D, Yang R. Formation and regulation of Yersinia biofilms. Protein Cell. 2011;2(3):173–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Perry RD, Fetherston JD. Yersinia pestis--etiologic agent of plague. Clin Microbiol Rev. 1997;10(1):35–66.
CAS
PubMed
PubMed Central
Google Scholar
Ramos JL, Gallegos MT, Marques S, Ramos-Gonzalez MI, Espinosa-Urgel M, Segura A. Responses of Gram-negative bacteria to certain environmental stressors. Curr Opin Microbiol. 2001;4(2):166–71.
Article
CAS
PubMed
Google Scholar
Ferber DM, Brubaker RR. Plasmids in Yersinia pestis. Infect Immun. 1981;31(2):839–41.
CAS
PubMed
PubMed Central
Google Scholar
Bearden SW, Fetherston JD, Perry RD. Genetic organization of the yersiniabactin biosynthetic region and construction of avirulent mutants in Yersinia pestis. Infect Immun. 1997;65(5):1659–68.
CAS
PubMed
PubMed Central
Google Scholar
Sulakvelidze A. Yersiniae other than Y. enterocolitica, Y. pseudotuberculosis, and Y. pestis: the ignored species. Microbes Infect. 2000;2(5):497–513.
Article
CAS
PubMed
Google Scholar
Rajanna C, Revazishvili T, Rashid MH, Chubinidze S, Bakanidze L, Tsanava S, Imnadze P, Bishop-Lilly KA, Sozhamannan S, Gibbons HS, et al. Characterization of pPCP1 Plasmids in Yersinia pestis Strains Isolated from the Former Soviet Union. Int J Microbiol. 2010;2010:760819.
Article
PubMed
PubMed Central
Google Scholar
Hinnebusch BJ, Erickson DL. Yersinia pestis biofilm in the flea vector and its role in the transmission of plague. Curr Top Microbiol Immunol. 2008;322:229–48.
CAS
PubMed
PubMed Central
Google Scholar
Darby C. Uniquely insidious: Yersinia pestis biofilms. Trends Microbiol. 2008;16(4):158–64.
Article
CAS
PubMed
Google Scholar
Bobrov AG, Kirillina O, Forman S, Mack D, Perry RD. Insights into Yersinia pestis biofilm development: topology and co-interaction of Hms inner membrane proteins involved in exopolysaccharide production. Environ Microbiol. 2008;10(6):1419–32.
Article
CAS
PubMed
Google Scholar
Abu Khweek A, Fetherston JD, Perry RD. Analysis of HmsH and its role in plague biofilm formation. Microbiology. 2010;156(Pt 5):1424–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Romling U, Amikam D. Cyclic di-GMP as a second messenger. Curr Opin Microbiol. 2006;9(2):218–28.
Article
PubMed
Google Scholar
Bobrov AG, Kirillina O, Perry RD. The phosphodiesterase activity of the HmsP EAL domain is required for negative regulation of biofilm formation in Yersinia pestis. FEMS Microbiol Lett. 2005;247(2):123–30.
Article
CAS
PubMed
Google Scholar
Bobrov AG, Kirillina O, Ryjenkov DA, Waters CM, Price PA, Fetherston JD, Mack D, Goldman WE, Gomelsky M, Perry RD. Systematic analysis of cyclic di-GMP signalling enzymes and their role in biofilm formation and virulence in Yersinia pestis. Mol Microbiol. 2011;79(2):533–51.
Article
CAS
PubMed
Google Scholar
Sun YC, Koumoutsi A, Jarrett C, Lawrence K, Gherardini FC, Darby C, Hinnebusch BJ. Differential control of Yersinia pestis biofilm formation in vitro and in the flea vector by two c-di-GMP diguanylate cyclases. PLoS One. 2011;6(4):e19267.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun F, Gao H, Zhang Y, Wang L, Fang N, Tan Y, Guo Z, Xia P, Zhou D, Yang R. Fur is a repressor of biofilm formation in Yersinia pestis. PLoS One. 2012;7(12):e52392.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun YC, Hinnebusch BJ, Darby C. Experimental evidence for negative selection in the evolution of a Yersinia pestis pseudogene. Proc Natl Acad Sci U S A. 2008;105(23):8097–101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vadyvaloo V, Hinz AK. A LysR-type transcriptional regulator, RovM, senses nutritional cues suggesting that it is involved in metabolic adaptation of Yersinia pestis to the flea gut. PLoS One. 2015;10(9):e0137508.
Article
PubMed
PubMed Central
Google Scholar
Liu L, Fang H, Yang H, Zhang Y, Han Y, Zhou D, Yang R. Reciprocal regulation of Yersinia pestis biofilm formation and virulence by RovM and RovA. Open Biol. 2016;6:150198. http://dx.doi.org/10.1098/rsob.150198.
Article
PubMed
PubMed Central
Google Scholar
Tam C, Demke O, Hermanas T, Mitchell A, Hendrickx AP, Schneewind O. YfbA, a Yersinia pestis regulator required for colonization and biofilm formation in the gut of cat fleas. J Bacteriol. 2014;196(6):1165–73.
Article
PubMed
PubMed Central
Google Scholar
Willias SP, Chauhan S, Lo CC, Chain PS, Motin VL. CRP-mediated carbon catabolite regulation of Yersinia pestis biofilm formation is enhanced by the carbon storage regulator protein, CsrA. PLoS One. 2015;10(8):e0135481.
Article
PubMed
PubMed Central
Google Scholar
Rebeil R, Jarrett CO, Driver JD, Ernst RK, Oyston PC, Hinnebusch BJ. Induction of the Yersinia pestis PhoP-PhoQ regulatory system in the flea and its role in producing a transmissible infection. J Bacteriol. 2013;195(9):1920–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chambers JR, Sauer K. Small RNAs and their role in biofilm formation. Trends Microbiol. 2013;21(1):39–49.
Article
CAS
PubMed
Google Scholar
Waters LS, Storz G. Regulatory RNAs in bacteria. Cell. 2009;136(4):615–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Storz G, Vogel J, Wassarman KM. Regulation by small RNAs in bacteria: expanding frontiers. Mol Cell. 2011;43(6):880–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yan Y, Su S, Meng X, Ji X, Qu Y, Liu Z, Wang X, Cui Y, Deng Z, Zhou D, et al. Determination of sRNA expressions by RNA-seq in Yersinia pestis grown in vitro and during infection. PLoS One. 2013;8(9):e74495.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qu Y, Bi L, Ji X, Deng Z, Zhang H, Yan Y, Wang M, Li A, Huang X, Yang R, et al. Identification by cDNA cloning of abundant sRNAs in a human-avirulent Yersinia pestis strain grown under five different growth conditions. Future Microbiol. 2012;7(4):535–47.
Article
CAS
PubMed
Google Scholar
Koo JT, Alleyne TM, Schiano CA, Jafari N, Lathem WW. Global discovery of small RNAs in Yersinia pseudotuberculosis identifies Yersinia-specific small, noncoding RNAs required for virulence. Proc Natl Acad Sci U S A. 2011;108(37):E709–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beauregard A, Smith EA, Petrone BL, Singh N, Karch C, McDonough KA, Wade JT. Identification and characterization of small RNAs in Yersinia pestis. RNA Biol. 2013;10(3):397–405.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schiano CA, Koo JT, Schipma MJ, Caulfield AJ, Jafari N, Lathem WW. Genome-wide analysis of small RNAs expressed by Yersinia pestis identifies a regulator of the Yop-Ysc type III secretion system. J Bacteriol. 2014;196(9):1659–70.
Article
PubMed
PubMed Central
Google Scholar
Lathem WW, Schroeder JA, Bellows LE, Ritzert JT, Koo JT, Price PA, Caulfield AJ, Goldman WE. Posttranscriptional regulation of the Yersinia pestis cyclic AMP receptor protein Crp and impact on virulence. mBio. 2014;5(1):e01038–01013.
Article
PubMed
PubMed Central
Google Scholar
Schiano CA, Lathem WW. Post-transcriptional regulation of gene expression in Yersinia species. Front Cell Infect Microbiol. 2012;2:129.
Article
PubMed
PubMed Central
Google Scholar
Fang N, Qu S, Yang H, Fang H, Liu L, Zhang Y, Wang L, Han Y, Zhou D, Yang R. HmsB enhances biofilm formation in Yersinia pestis. Front Microbiol. 2014;5:685.
Article
PubMed
PubMed Central
Google Scholar
Zhou D, Tong Z, Song Y, Han Y, Pei D, Pang X, Zhai J, Li M, Cui B, Qi Z, et al. Genetics of metabolic variations between Yersinia pestis biovars and the proposal of a new biovar, microtus. J Bacteriol. 2004;186(15):5147–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A. 2000;97(12):6640–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ni B, Du Z, Guo Z, Zhang Y, Yang R. Curing of four different plasmids in Yersinia pestis using plasmid incompatibility. Lett Appl Microbiol. 2008;47(4):235–40.
Article
CAS
PubMed
Google Scholar
Liu Z, Wang H, Wang H, Wang J, Bi Y, Wang X, Yang R, Han Y. Intrinsic plasmids influence MicF-mediated translational repression of ompF in Yersinia pestis. Front Microbiol. 2015;6:862.
PubMed
PubMed Central
Google Scholar
Beckmann BM, Grunweller A, Weber MH, Hartmann RK. Northern blot detection of endogenous small RNAs (approximately14 nt) in bacterial total RNA extracts. Nucleic Acids Res. 2010;38(14):e147.
Article
PubMed
PubMed Central
Google Scholar
Gao H, Zhou D, Li Y, Guo Z, Han Y, Song Y, Zhai J, Du Z, Wang X, Lu J, et al. The iron-responsive Fur regulon in Yersinia pestis. J Bacteriol. 2008;190(8):3063–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lodge J, Fear J, Busby S, Gunasekaran P, Kamini NR. Broad host range plasmids carrying the Escherichia coli lactose and galactose operons. FEMS Microbiol Lett. 1992;74(2-3):271–6.
Article
CAS
PubMed
Google Scholar
Heroven AK, Dersch P. RovM, a novel LysR-type regulator of the virulence activator gene rovA, controls cell invasion, virulence and motility of Yersinia pseudotuberculosis. Mol Microbiol. 2006;62(5):1469–83.
Article
CAS
PubMed
Google Scholar
Heroven AK, Bohme K, Tran-Winkler H, Dersch P. Regulatory elements implicated in the environmental control of invasin expression in enteropathogenic Yersinia. Adv Exp Med Biol. 2007;603:156–66.
Article
PubMed
Google Scholar
Cathelyn JS, Crosby SD, Lathem WW, Goldman WE, Miller VL. RovA, a global regulator of Yersinia pestis, specifically required for bubonic plague. Proc Natl Acad Sci U S A. 2006;103(36):13514–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benjamin JA, Desnoyers G, Morissette A, Salvail H, Masse E. Dealing with oxidative stress and iron starvation in microorganisms: an overview. Can J Physiol Pharmacol. 2010;88(3):264–72.
Article
CAS
PubMed
Google Scholar
Wassarman KM. Small RNAs in bacteria: diverse regulators of gene expression in response to environmental changes. Cell. 2002;109(2):141–4.
Article
CAS
PubMed
Google Scholar
Desnoyers G, Bouchard MP, Masse E. New insights into small RNA-dependent translational regulation in prokaryotes. Trends Genet. 2013;29(2):92–8.
Article
CAS
PubMed
Google Scholar
Vogel J, Luisi BF. Hfq and its constellation of RNA. Nat Rev Microbiol. 2011;9(8):578–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Papenfort K, Vanderpool CK. Target activation by regulatory RNAs in bacteria. FEMS Microbiol Rev. 2015;39(3):362–78.
Article
PubMed
PubMed Central
Google Scholar