van der Oost J, Westra ER, Jackson RN, Wiedenheft B. Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nat Rev Microbiol. 2014;12:479–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bhaya D, Davison M, Barrangou R. CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet. 2011;45:273–97.
Article
CAS
PubMed
Google Scholar
Westra ER, Swarts D, Staals R, Jore MM, Brouns SJ, van der Oost J. The CRISPRs, they are a-changin’: how prokaryotes generate adaptive immunity. Annu Rev Genet. 2012;46:311–38.
Article
CAS
PubMed
Google Scholar
Wiedenheft B, Sternberg SH, Doudna JA. RNA-guided genetic silencing system in bacteria and archaea. Nature. 2012;482:175–82.
Article
Google Scholar
Sorek R, Lawrence CM, Wiedenheft B. CRISPR-mediated adaptive immune systems in bacteria and archaea. Annu Rev Biochem. 2013;82:237–66.
Article
CAS
PubMed
Google Scholar
Jore MM, Lundgren M, Van Duijn E, Bultema JB, Westra ER, et al. Structural basis for CRISPR RNA-guided recognition by Cascade. Nat Struct Mol Biol. 2011;18:529–36.
Article
CAS
PubMed
Google Scholar
Wiedenheft B, Lander GC, Zhou K, Jore MM, Brouns SJ, van der Oost J, et al. Structures of the RNA-guided surveillance complex from a bacterial immune system. Nature. 2011;477:486–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao H, Sheng G, Wang J, Wang M, Bunkoczi G, et al. Crystal structure of the RNA-guided immune surveillance Cascade complex in Escherichia coli. Nature. 2014;515:147–50.
Article
CAS
PubMed
Google Scholar
Jackson RN, Golden SM, Van Erp PB, Carter J, Westra ER, et al. Crystal structure of the CRISPR RNA-guided surveillance complex from Escherichia coli. Science. 2014;345:1473–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mulepati S, Héroux A, Bailey S. Structural biology. Crystal structure of a CRISPR RNA-guided surveillance complex bound to a ssDNA target. Science. 2014;345:1779–84.
Article
Google Scholar
Westra ER, Van Erp PB, Künne T, Wong SP, Staals RH, et al. CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3. Mol Cell. 2012;46:595–605.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ivančić-Baće I, Howard JA, Bolt EL. Tuning in to interference: R-loops and cascade complexes in CRISPR immunity. J Mol Biol. 2012;422:607–16.
Article
PubMed
Google Scholar
Hochstrasser ML, Taylor DW, Bhat P, Guegler CK, Sternberg SH, et al. CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference. Proc Natl Acad Sci U S A. 2014;111:6618–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mulepati S, Bailey S. In vitro reconstitution of an Escherichia coli RNA-guided immune system reveals unidirectional, ATP-dependent degradation of DNA target. J Biol Chem. 2013;288:22184–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sinkunas T, Gasiunas G, Waghmare SP, Dickman MJ, Barrangou R, et al. In vitro reconstitution of Cascade-mediated CRISPR immunity in Streptococcus thermophilus. EMBO J. 2013;32:385–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gong B, Shin M, Sun J, Jung C-H, Bolt EB, et al. Molecular insights into DNA interference by CRISPR-associated nuclease-helicase Cas3. Proc Natl Acad Sci U S A. 2014;111:16359–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beloglazova N, Petit P, Flick R, Brown G, Savchenko A, Yakunin AF. Structure and activity of Cas3 HD nuclease MJ0384, an effector enzyme of the CRISPR interference. EMBO J. 2011;30:4616–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sinkunas T, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V. Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR-Cas immune system. EMBO J. 2011;30:1335–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huo Y, Nam KH, Ding F, Lee H, Wu L, et al. Structures of CRISPR Cas3 offer mechanistic insights into Cascade-activated DNA unwinding and degradation. Nat Struct Mol Biol. 2014;21:771–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mojica FJ, Díez-Villaseňor C, García-Martínez J, Almendros J. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology. 2009;155:733–40.
Article
CAS
PubMed
Google Scholar
Semenova E, Jore MM, Datsenko KA, Semenova A, Westra ER, et al. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proc Natl Acad Sci U S A. 2011;108:10098–103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fineran PC, Gerritzen MJ, Suárez-Diez M, Künne T, Boekhorst J, et al. Degenerate target sites mediate rapid primed CRISPR adaptation. Proc Natl Acad Sci U S A. 2014;111:E1629–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blosser TR, Loeff L, Westra ER, Vlot M, Künne T, et al. Two distinct DNA binding modes guide dual roles of a CRISPR-Cas protein complex. Mol Cell. 2015;58:60–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sashital DG, Wiedenheft B, Doudna JA. Mechanism of foreign DNA selection in a bacterial adaptive immune system. Mol Cell. 2012;48:606–15.
Article
Google Scholar
Westra ER, Semenova E, Datsenko KA, Jackson RN, Wiedenheft B, Severinov K, et al. Type I-E CRISPR-Cas systems discriminate target from non-target DNA through base pairing-independent PAM recognition. Plos Genet. 2013;9, e1003742.
Article
CAS
PubMed
PubMed Central
Google Scholar
Swarts DC, Mosterd C, Van Passel MW, Brouns SJ. CRISPR interference directs strand specific spacer acquisition. Plos ONE. 2012;7, e35888.
Article
CAS
PubMed
PubMed Central
Google Scholar
Datsenko KA, Pougach K, Tikhonov A, Wanner BL, Severinov K, Semenova E. Molecular memory of prior infections activates the CRISPR-Cas adaptive bacterial immunity system. Nat Commun. 2012;3:945.
Article
PubMed
Google Scholar
Szczelkun MD, Tikhomirova MS, Sinkunas T, Gasiunas G, Karvelis T, et al. Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes. Proc Natl Acad Sci U S A. 2014;111:9798–803.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rutkauskas M, Sinkunas T, Songailiene I, Tikhomirova MS, Siksnys V, Seidel R. Directional R-loop formation by the CRISPR-Cas surveillance complex Cascade provides efficient off-target site rejection. Cell Reports. 2015;10:1534–43.
Article
CAS
Google Scholar
Deveau H, Barrangou R, Garneau JE, Labonté J, Fremaux C, et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol. 2008;190:1390–400.
Article
CAS
PubMed
PubMed Central
Google Scholar
Redding S, Sternberg SH, Marshall M, Gibb B, Bhat P, et al. Surveillance and processing of foreign DNA by the Escherichia coli CRISPR-Cas system. Cell. 2015;163:854–65.
Article
CAS
PubMed
Google Scholar
Xue C, Seetharam AS, Musharova O, Severinov K, Brouns SJJ, et al. CRISPR interference and priming varies with individual spacer sequences. Nucleic Acids Res. 2015;43:10831–47.
Article
PubMed
PubMed Central
Google Scholar
Pul Ü, Wurm R, Arslan Z, Geissen R, Hofmann N, Wagner R. Identification and characterization of E. coli CRISPR-Cas promoters and their silencing by H-NS. Mol Microbiol. 2010;75:1495–512.
Article
CAS
PubMed
Google Scholar
Westra ER, Pul Ü, Heidrich N, Jore MM, Lundgren M, et al. H-NS-mediated repression of CRISPR-based immunity in Escherichia coli K12 can be relieved by transcription activator LeuO. Mol Microbiol. 2010;77:1380–93.
Article
CAS
PubMed
Google Scholar
Yang CD, Chen YH, Huang HY, Huang HD, Tseng CP. CRP represses the CRISPR/Cas system in Escherichia coli: evidence that endogenous CRISPR spacers impede phage P1 replication. Mol Microbiol. 2014;92:1072–91.
Article
CAS
PubMed
Google Scholar
Shinkai A et al. Transcription activation mediated by a cyclic AMP receptor protein from Thermus themophilus HB8. J Bacteriol. 2007;189:3891–901.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science. 2008;321:960–4.
Article
CAS
PubMed
Google Scholar
Pougach K, Semenova E, Bogdanova E, Datsenko KA, Djordjevic M, et al. Transcription, processing and function of CRISPR cassettes in Escherichia coli. Mol Microbiol. 2010;77:259–72.
Article
Google Scholar
Almendros C, Guzmán NM, Díez-Villaseñor C, García-Martínez J, Mojica FJ. Target motifs affecting natural immunity by a constitutive CRISPR-Cas system in Escherichia coli. Plos ONE. 2012;7:e50797.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vercoe RB, Chang JT, Dy RL, Taylor C, Gristwood T, et al. Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands. Plos Genet. 2013;9, e1003454.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yosef I, Goren MG, Kiro R, Edgar R, Qimron U. High-temperature protein G is essential for activity of the Escherichia coli clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system. Proc Natl Acad Sci U S A. 2011;108:20136–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nonaka G, Blankschien M, Herman C, Gross CA, Rhodius VA. Regulon and promoter analysis of the E. coli heat-shock factor; sigma32, reveals a multifaceted cellular response to heat stress. Genes Dev. 2006;20:1776–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wade JT, Castro Roa D, Grainger DC, Hurd D, Busby SJ, Struhl K, et al. Extensive functional overlap between sigma factors in Escherichia coli. Nat Struct Mol Biol. 2006;13:806–14.
Article
CAS
PubMed
Google Scholar
Ivančić-Baće I, Radovčić M, Bočkor L, Howard JL, Bolt EL. Cas3 stimulates runaway replication of a ColE1 plasmid in Escherichia coli and antagonises Rnase HI. RNA Biol. 2013;10:770–8.
Article
PubMed
PubMed Central
Google Scholar
Miller JH. Experiments in Molecular Genetics. Cold Spring Harbor: NY: Cold Spring Harbor Laboratory Press; 1992.
Google Scholar
Sonden B, Uhlin BE. Coordinated and differential expression of histone-like proteins in Escherichia coli: regulation and function of the H-NS analog StpA. EMBO J. 1996;15:4970–80.
CAS
PubMed
PubMed Central
Google Scholar
Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A. 2000;97:6640–5.
Article
CAS
PubMed
PubMed Central
Google Scholar