Heilig HG, Zoetendal EG, Vaughan EE, Marteau P, Akkermans AD, De Vos WM. Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA. Appl Environ Microbiol. 2002;68(1):114–23.
Article
PubMed Central
CAS
PubMed
Google Scholar
Makivuokko H, Tiihonen K, Tynkkynen S, Paulin L, Rautonen N. The effect of age and non-steroidal anti-inflammatory drugs on human intestinal microbiota composition. Br J Nutr. 2010;103(02):227–34.
Article
PubMed
Google Scholar
Reuter G. The Lactobacillus and Bifidobacterium microflora of the human intestine: composition and succession. Curr Issues Intest Microbiol. 2001;2(2):43–53.
CAS
PubMed
Google Scholar
Wall R, Fitzgerald G, Hussey S, Ryan T, Murphy B, Ross P, et al. Genomic diversity of cultivable Lactobacillus populations residing in the neonatal and adult gastrointestinal tract. FEMS Microbiol Ecol. 2007;59(1):127–37.
Article
CAS
PubMed
Google Scholar
Sharpe ME, Latham MJ, Garvie EI, Zirngibl J, Kandler O. Two new species of Lactobacillus isolated from the bovine rumen, Lactobacillus ruminis sp.nov. and Lactobacillus vitulinus sp.nov. J Gen Microbiol. 1973;77(1):37–49.
Article
CAS
PubMed
Google Scholar
Stewart CS, Fonty G, Gouet P. The establishment of rumen microbial communities. Anim Feed Sci Technol. 1988;21(2–4):69–97.
Article
Google Scholar
Greetham HL, Giffard C, Hutson RA, Collins MD, Gibson GR. Bacteriology of the Labrador dog gut: a cultural and genotypic approach. J Appl Microbiol. 2002;93(4):640–6.
Article
CAS
PubMed
Google Scholar
Al Jassim RA. Lactobacillus ruminis is a predominant lactic acid producing bacterium in the caecum and rectum of the pig. Lett Appl Microbiol. 2003;37(3):213–7.
Article
CAS
PubMed
Google Scholar
Desai AR, Musil KM, Carr AP, Hill JE. Characterization and quantification of feline fecal microbiota using cpn60 sequence-based methods and investigation of animal-to-animal variation in microbial population structure. Vet Microbiol. 2009;137(1–2):120–8.
Article
CAS
PubMed
Google Scholar
Mathiesen SD, Orpin CG, Greenwood Y, Blix AS. Seasonal changes in the cecal microflora of the high-arctic Svalbard reindeer (Rangifer tarandus platyrhynchus). Appl Environ Microbiol. 1987;53(1):114–8.
PubMed Central
CAS
PubMed
Google Scholar
Ritchie LE, Burke KF, Garcia-Mazcorro JF, Steiner JM, Suchodolski JS. Characterization of fecal microbiota in cats using universal 16S rRNA gene and group-specific primers for Lactobacillus and Bifidobacterium spp. Veterinary Microbiology 2009, In Press, Corrected Proof.
Vörös A. Diet Related Changes in the Gastrointestinal Microbiota of Horses. Masters. Uppsala: Swedish University of Agricultural Sciences; 2008.
Google Scholar
Willing B, Vörös A, Roos S, Jones C, Jansson A, Lindberg JE. Changes in faecal bacteria associated with concentrate and forage-only diets fed to horses in training. Equine Vet J. 2009;41(9):908–14.
Article
CAS
PubMed
Google Scholar
Endo A, Futagawa-Endo Y, Dicks LMT. Diversity of Lactobacillus and Bifidobacterium in feces of herbivores, omnivores and carnivores. Anaerobe. 2010;16(6):590–6.
Article
PubMed
Google Scholar
Kovalenko NK, Golovach TN, Kvasnikov EI. Lactic bacteria in the digestive tract of poultry. Mikrobiologiia. 1989;58(1):137–43.
CAS
PubMed
Google Scholar
Xenoulis PG, Gray PL, Brightsmith D, Palculict B, Hoppes S, Steiner JM et al. Molecular characterization of the cloacal microbiota of wild and captive parrots. Vet Microbiol, In Press, Accepted Manuscript.
Lerche M, Reuter G. Isolierung und Differenzierung anaerober Lactobacilleae aus Darm erwachsener Menschen (Beitrag zum Lactobacillus bifidus Problem). Zentralbl Bakteriol. 1961;182:324.
Google Scholar
Tannock GW, Munro K, Harmsen HJ, Welling GW, Smart J, Gopal PK. Analysis of the fecal microflora of human subjects consuming a probiotic product containing Lactobacillus rhamnosus DR20. Appl Environ Microbiol. 2000;66(6):2578–88.
Article
PubMed Central
CAS
PubMed
Google Scholar
Neville BA, Forde BM, Claesson MJ, Darby T, Coghlan A, Nally K, et al. Characterization of pro-inflammatory flagellin proteins produced by Lactobacillus ruminis and related motile lactobacilli. PLoS ONE. 2012;7(7):e40592.
Article
PubMed Central
CAS
PubMed
Google Scholar
Taweechotipatr M, Iyer C, Spinler JK, Versalovic J, Tumwasorn S. Lactobacillus saerimneri and Lactobacillus ruminis: novel human-derived probiotic strains with immunomodulatory activities. FEMS Microbiol Lett. 2009;293(1):65–72.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yun J-H, Yim D-S, Kang J-Y, Kang B-Y, Shin E-A, Chung M-J, et al. Identification of Lactobacillus ruminus SPM0211 isolated from healthy Koreans and its antimicrobial activity against some pathogens. Arch Pharm Res. 2005;28(6):660–6.
Article
CAS
PubMed
Google Scholar
O’Donnell MM, O’Toole PW, Ross RP. Catabolic flexibility of mammalian-associated lactobacilli. Microb Cell Factories. 2013;12:48.
Article
Google Scholar
O’Donnell MM, Forde BM, Neville BA, Ross RP, O’Toole PW. Carbohydrate catabolic flexibility in the mammalian intestinal commensal Lactobacillus ruminis revealed by fermentation studies aligned to genome annotations. Microb Cell Fact. 2011;10 Suppl 1:S12.
Article
PubMed
Google Scholar
Forde BM, Neville BA, O’ Donnell MM, Riboulet-Bisson E, Claesson MJ, Coghlan A, et al. Genome sequences and comparative genomics of two Lactobacillus ruminis strains from the bovine and human intestinal tracts. Microb Cell Fact. 2011;10 Suppl 1:S13.
Article
PubMed Central
PubMed
Google Scholar
De Vries MC, Vaughan EE, Kleerebezem M, De Vos WM. Lactobacillus plantarum survival, functional and potential probiotic properties in the human intestinal tract. Int Dairy J. 2006;16(9):1018–28.
Article
CAS
Google Scholar
Dunne C, Murphy L, Flynn S, O’ Mahony L, O’ Halloran S, Feeney M et al. Probiotics: from myth to reality. Demonstration of functionality in animal models of disease and in human clinical trials. In: Lactic Acid Bacteria: Genetics, Metabolism and Applications. Edited by Wil Konings, Otto Kuipers, O.P. Kuipers, Veld JHJHit: Springer Netherlands; 1999: 279-92.
Hänninen ML. Sensitivity of Helicobacter pylori to different bile salts. Eur J Clin Microbiol Infect Dis. 1991;10(6):515–8.
Article
PubMed
Google Scholar
Bennedsen M, Stuer-Lauridsen B, Danielsen M, Johansen E. Screening for antimicrobial resistance genes and virulence factors via genome sequencing. Appl Environ Microbiol. 2011;77(8):2785–7.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhou JS, Pillidge CJ, Gopal PK, Gill HS. Antibiotic susceptibility profiles of new probiotic Lactobacillus and Bifidobacterium strains. Int J Food Microbiol. 2005;98(2):211–7.
Article
CAS
PubMed
Google Scholar
Yoon KY, Woodams EE, Hang YD. Production of probiotic cabbage juice by lactic acid bacteria. Bioresour Technol. 2006;97(12):1427–30.
Article
CAS
PubMed
Google Scholar
Champagne CP, Gardner NJ, Roy D. Challenges in the addition of probiotic cultures to foods. Crit Rev Food Sci Nutr. 2005;45(1):61–84.
Article
CAS
PubMed
Google Scholar
Harrison Jr AP, Hansen PA. A motile Lactobacillus from the cecal feces of turkeys. J Bacteriol. 1950;59(3):444.
PubMed Central
PubMed
Google Scholar
Deibel RH, Niven Jr CF. Microbiology of meat curing: I. The occurrence and significance of a motile microorganism of the genus Lactobacillus in ham curing brines. Appl Microbiol. 1958;6(5):323.
PubMed Central
CAS
PubMed
Google Scholar
Nielsen DS, Schillinger U, Franz CMAP, Bresciani J, Amoa-Awua W, Holzapfel WH, et al. Lactobacillus ghanensis sp. nov., a motile lactic acid bacterium isolated from Ghanaian cocoa fermentations. Int J Syst Evol Microbiol. 2007;57(7):1468–72.
Article
CAS
PubMed
Google Scholar
Chao S-H, Tomii Y, Sasamoto M, Fujimoto J, Tsai Y-C, Watanabe K. Lactobacillus capillatus sp. nov., a motile bacterium isolated from stinky tofu brine. Int J Syst Evol Microbiol. 2008;58(11):2555–9.
Article
CAS
PubMed
Google Scholar
Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature. 2001;410(6832):1099–103.
Article
CAS
PubMed
Google Scholar
Lawley B, Sims IM, Tannock GW. Whole-Transcriptome Shotgun Sequencing (RNA-seq) screen reveals upregulation of cellobiose and motility operons of Lactobacillus ruminis L5 during Growth on Tetrasaccharides Derived from Barley β-Glucan. Appl Environ Microbiol. 2013;79(18):5661–9.
Article
PubMed Central
CAS
PubMed
Google Scholar
Harshey RM. Bacterial motility on a surface: many ways to a common goal. Annu Rev Microbiol. 2003;57(1):249–73.
Article
CAS
PubMed
Google Scholar
Rather PN. Swarmer cell differentiation in Proteus mirabilis. Environ Microbiol. 2005;7(8):1065–73.
Article
CAS
PubMed
Google Scholar
Verstraeten N, Braeken K, Debkumari B, Fauvart M, Fransaer J, Vermant J, et al. Living on a surface: swarming and biofilm formation. Trends Microbiol. 2008;16(10):496–506.
Article
CAS
PubMed
Google Scholar
Partridge JD, Harshey RM. Swarming: flexible roaming plans. J Bacteriol. 2013;195(5):909–18.
Article
PubMed Central
CAS
PubMed
Google Scholar
Attmannspacher U, Scharf BE, Harshey RM. FliL is essential for swarming: motor rotation in absence of FliL fractures the flagellar rod in swarmer cells of Salmonella enterica. Mol Microbiol. 2008;68(2):328–41.
Article
CAS
PubMed
Google Scholar
Sharma M, Anand SK. Swarming: a coordinated bacterial activity. Curr Sci. 2002;83:707–15.
CAS
Google Scholar
Niu C, Graves JD, Mokuolu FO, Gilbert SE, Gilbert ES. Enhanced swarming of bacteria on agar plates containing the surfactant Tween 80. J Microbiol Methods. 2005;62(1):129–32.
Article
CAS
PubMed
Google Scholar
Lebeer S, Claes IJ, Verhoeven TL, Vanderleyden J, De Keersmaecker SC. Exopolysaccharides of Lactobacillus rhamnosus GG form a protective shield against innate immune factors in the intestine. Microb Biotechnol. 2011;4(3):368–74.
Article
PubMed Central
CAS
PubMed
Google Scholar
Butler MT, Wang Q, Harshey RM. Cell density and mobility protect swarming bacteria against antibiotics. Proc Natl Acad Sci. 2010;107(8):3776–81.
Article
PubMed Central
CAS
PubMed
Google Scholar
Başyiğit Kılıç G, Kuleaşan H, Sömer VF, Akpınar D. Determining potential probiotic properties of human originated Lactobacillus plantarum strains. Biotechnol Bioprocess Eng. 2013;18(3):479–85.
Article
Google Scholar
Delgado S, Suarez A, Mayo B. Dominant cultivable Lactobacillus species from the feces of healthy adults in northern Spain. Int Microbiol. 2007;10(2):141–5.
CAS
PubMed
Google Scholar
Delgado S, O’Sullivan E, Fitzgerald G, Mayo B. Subtractive screening for probiotic properties of Lactobacillus species from the human gastrointestinal tract in the search for new probiotics. J Food Sci. 2007;72(8):M310–5.
Article
CAS
PubMed
Google Scholar
Salyers AA, Gupta A, Wang Y. Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol. 2004;12(9):412–6.
Article
CAS
PubMed
Google Scholar
Danielsen M, Wind A. Susceptibility of Lactobacillus spp. to antimicrobial agents. Int J Food Microbiol. 2003;82(1):1–11.
Article
CAS
PubMed
Google Scholar
EFSA. Guidance on the Assessment of Bacterial Susceptibility to Antimicrobials of Human and Veterinary Importance. In: EFSA, editor. EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). vol. 10: EFSA Jth ed. 2012. p. 2740.
Google Scholar
Yunis AA. Chloramphenicol toxicity: 25 years of research. Am J Med. 1989;87(3N):44N–8.
CAS
PubMed
Google Scholar
O’ Donnell MM, O’ Toole PW, Ross RP. Catabolic flexibility of mammalian-associated lactobacilli. Microb Cell Fact. 2013;12(1):48.
Article
Google Scholar
De Vrese M, Stegelmann A, Richter B, Fenselau S, Laue C, Schrezenmeir J. Probiotics - compensation for lactase insufficiency. Am J Clin Nutr. 2001;73(2):421s–9.
CAS
PubMed
Google Scholar
de las Rivas B, Marcobal A, Munoz R. Development of a multilocus sequence typing method for analysis of Lactobacillus plantarum strains. Microbiology. 2006;152(1):85–93.
Article
CAS
PubMed
Google Scholar
Diancourt L, Passet V, Chervaux C, Garault P, Smokvina T, Brisse S. Multilocus sequence typing of Lactobacillus casei reveals a clonal population structure with low levels of homologous recombination. Appl Environ Microbiol. 2007;73(20):6601–11.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tanigawa K, Watanabe K. Multilocus sequence typing reveals a novel subspeciation of Lactobacillus delbrueckii. Microbiology. 2011;157(3):727–38.
Article
CAS
PubMed
Google Scholar
Daniels R, Vanderleyden J, Michiels J. Quorum sensing and swarming migration in bacteria. FEMS Microbiol Rev. 2004;28(3):261–89.
Article
CAS
PubMed
Google Scholar
Kim W, Surette MG. Metabolic differentiation in actively swarming Salmonella. Mol Microbiol. 2004;54(3):702–14.
Article
CAS
PubMed
Google Scholar
Lux R, Munasinghe VRN, Castellano F, Lengeler JW, Corrie JET, Khan S. Elucidation of a PTS-carbohydrate chemotactic signal pathway in Escherichia coli using a time-resolved behavioral assay. Mol Biol Cell. 1999;10(4):1133–46.
Article
PubMed Central
CAS
PubMed
Google Scholar
De Man JC, Rogosa M, Sharpe ME. A medium for the cultivation of lactobacilli. J Appl Microbiol. 1960;23(1):130–5.
Google Scholar
O’Donnell MM, Harris HMB, Jeffery IB, Claesson MJ, Younge B, O’Toole PW, et al. The core faecal bacterial microbiome of Irish Thoroughbred racehorses. Letts App Microbiol. 2013;57:492–501.
Article
Google Scholar
De Palencia PF, López P, Corbí AL, Peláez C, Requena T. Probiotic strains: survival under simulated gastrointestinal conditions, in vitro adhesion to Caco-2 cells and effect on cytokine secretion. Eur Food Res Technol. 2008;227(5):1475–84.
Article
Google Scholar
Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium series. 1999;1999:95–8.
Google Scholar
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28(10):2731–9.
Article
PubMed Central
CAS
PubMed
Google Scholar
Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol. 2006;23(2):254–67.
Article
CAS
PubMed
Google Scholar
Jolley KA, Feil EJ, Chan MS, Maiden MCJ. Sequence type analysis and recombinational tests (START). Bioinformatics. 2001;17(12):1230–1.
Article
CAS
PubMed
Google Scholar
Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16(2):111–20.
Article
CAS
PubMed
Google Scholar
Noguchi H, Park J, Takagi T. MetaGene: prokaryotic gene finding from environmental genome shotgun sequences. Nucleic Acids Res. 2006;34(19):5623–30.
Article
PubMed Central
CAS
PubMed
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10.
Article
CAS
PubMed
Google Scholar
Carver TJ, Rutherford KM, Berriman M, Rajandream M-A, Barrell BG, Parkhill J. ACT: the Artemis comparison tool. Bioinformatics. 2005;21(16):3422–3.
Article
CAS
PubMed
Google Scholar
Alikhan N-F, Petty NK, Zakour NLB, Beatson SA. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics. 2011;12(1):402.
Article
PubMed Central
CAS
PubMed
Google Scholar
Higgins DG, Thompson JD, Gibson TJ, Russell FD. Using CLUSTAL for multiple sequence alignments. In: Methods in Enzymology. Edited by Sidney P. Colowick, Kaplan NO, vol. Volume 266: Academic Press; 1996: 383-402.
Creevey C, McInerney JO. Clann: investigating phylogenetic information through supertree analyses. Bioinformatics. 2005;21(3):390–2.
Article
CAS
PubMed
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible read trimming tool for illumina NGS data. Bioinformatics. 2014: btu170
Lohse M, Bolger AM, Nagel A, Fernie AR, Lunn JE, Stitt M, et al. RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics. Nucleic Acids Res. 2012;40(W1):W622–7.
Article
PubMed Central
CAS
PubMed
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–9.
Article
PubMed Central
CAS
PubMed
Google Scholar
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):R106.
Article
PubMed Central
CAS
PubMed
Google Scholar
Anders S. HTSeq: Analysing high-throughput sequencing data with Python. http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html. 2010.
Anders S. Analysing RNA-Seq data with the “DESeq” package. Mol Biol. 2010:1-17.