Miyajima K, Tanii A, Akita T: Pseudomonas fuscovaginae sp. nvm. rev. Int J Syst Bacteriol. 1983, 33: 656-657. 10.1099/00207713-33-3-656.
Article
Google Scholar
Tanii A, Miyajima K, Akita T: The sheath brown rot disease of rice and its causal bacterium Pseudomonas fuscovaginae sp. nov. Ann Phytopathological Soc Japan. 1976, 42: 540-548. 10.3186/jjphytopath.42.540.
Article
Google Scholar
Anzai Y, Kim H, Park JY, Wakabayashi H, Oyaizu H: Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol. 2000, 50 (Pt 4): 1563-1589. 10.1099/00207713-50-4-1563.
Article
CAS
PubMed
Google Scholar
Hofte M, De Vos P: Plant Pathogenic Pseudomoans Species. Plant-Associated Bacteria. Edited by: Gnanamanickam SS. 2006, Springer, Netherlands, 507-533. 10.1007/978-1-4020-4538-7_14.
Chapter
Google Scholar
Duveiller E, Snacken F, Maraite H: First detection of Pseudomonas fuscovaginae on maize and sorghum in Burundi. Plant Disease. 1989, 73: 514-517. 10.1094/PD-73-0514.
Article
Google Scholar
Rott P, Nottheghem JL, Frossard P: Identification and characterization of Pseudomonas fuscovaginae, the causal agent of bacterial sheath brown rot of rice, from Madagascar and other countries. Plant Disease. 1989, 73: 133-137. 10.1094/PD-73-0133.
Article
Google Scholar
Duveiller E: Bacterial sheath rot of wheat caused by Pseudomonas fuscovaginae in the highlands of Mexico. Plant Disease. 1990, 74: 932-935. 10.1094/PD-74-0932.
Article
Google Scholar
Cottyn B, Cerez MT, Van Outryve MF, Barroga J, Swings J, Mew TW: Bacterial diseases of rice. I. Pathogenic bacteria associated with sheath rot complex and grain discoloration of rice in the Philippines. Plant Disease. 1996, 80: 429-437. 10.1094/PD-80-0429.
Article
Google Scholar
Sharma S, Sthapit BR, Pradhanang PM, Joshi KD: Bacterial Sheath Brown Rot of Rice caused by Pseudomonas fuscovaginae in Nepal. "Rice Cultivation in Highland Areas". Edited by: Poisson C, Rakotoarisoa J. 1997, CIRAD-CA, Montpellier, France, 107-112. Proc of the CIRAD Conference, Antananarivo, Madagascar 29 March-5 April 1996
Google Scholar
Malavolta VMA, Almeida IMG, Malavolta JVA: Characterization of Pseudomonas fuscovaginae on rice in Sao Paulo State, Brazil, and reaction of rice cultivars to the bacterium. Summa Phytopathol. 1997, 23: 29-35.
Google Scholar
Xie GL: First report of sheath brown rot of rice in China and characterization of the causal organism by phenotypic tests and Biolog. Intl Rice Res Notes. 2003, 28: 50-52.
CAS
Google Scholar
Rostam M, Rahimian H, Gasemi A: Identification of pseudomonas fuscovaginaeas the bacterial sheath brown rot of rice in the North of Iran. Iran J PlantPathol. 2005, 41: 57-58.
Google Scholar
Razak A, Zainudin N, Sidiqe S, Ismail N, Mohamad N, Salleh B: Sheath brown rot disease of rice caused by Pseudomonas Fuscovaginae in the Peninsular Malaysia. J Plant Protect Res. 2009, 49 (3): 244-249. 10.2478/v10045-009-0037-x.
Article
Google Scholar
Cother EJ, Stodart B, Noble DH, Reinke R, Van de Ven RJ: Polyphasic identification of Pseudomonas fuscovaginae causing sheath and glume lesions on rice in Australia. Australas Plant Pathol. 2009, 38: 247-261. 10.1071/AP08103.
Article
Google Scholar
Zeigler RS, Alvarez E: Bacterial sheath brown rot of rice by Pseudomonas fuscovaginae in latin America. Plant Disease. 1987, 71: 592-597. 10.1094/PD-71-0592.
Article
Google Scholar
Romantschuk M, Bamford DH: The causal agent of halo blight in bean, Pseudomonas syringae pv. phaseolicola, attaches to stomata via its pili. Microb Pathog. 1986, 1 (2): 139-148. 10.1016/0882-4010(86)90016-1.
Article
CAS
PubMed
Google Scholar
Suoniemi A, Björklöf K, Haahtela K, Romantschuk M: Pili of Pseudomonas syringae pathovar syringae enhance initiation of bacterial epiphytic colonization of bean. Microbiology. 1995, 141 (2): 497-503. 10.1099/13500872-141-2-497.
Article
CAS
Google Scholar
Roine E, Raineri DM, Romantschuk M, Wilson M, Nunn DN: Characterization of type IV pilus genes in Pseudomonas syringae pv. tomato DC3000. Mol Plant Microbe Interact. 1998, 11 (11): 1048-1056. 10.1094/MPMI.1998.11.11.1048.
Article
CAS
PubMed
Google Scholar
Nguyen LC, Taguchi F, Tran QM, Naito K, Yamamoto M, Ohnishi-Kameyama M, Ono H, Yoshida M, Chiku K, Ishii T, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y: Type IV pilin is glycosylated in Pseudomonas syringae pv. tabaci 6605 and is required for surface motility and virulence. Mol Plant Pathol. 2012, 13 (7): 764-774. 10.1111/j.1364-3703.2012.00789.x.
Article
CAS
PubMed
Google Scholar
Taguchi F, Ichinose Y: Role of type IV pili in virulence of Pseudomonas syringae pv. tabaci 6605: correlation of motility, multidrug resistance, and HR-inducing activity on a nonhost plant. Mol Plant Microbe Interact. 2011, 24 (9): 1001-1011. 10.1094/MPMI-02-11-0026.
Article
CAS
PubMed
Google Scholar
Laue H, Schenk A, Li H, Lambertsen L, Neu TR, Molin S, Ullrich MS: Contribution of alginate and levan production to biofilm formation by Pseudomonas syringae. Microbiology. 2006, 152 (Pt 10): 2909-2918. 10.1099/mic.0.28875-0.
Article
CAS
PubMed
Google Scholar
Yu J, Penaloza-Vazquez A, Chakrabarty AM, Bender CL: Involvement of the exopolysaccharide alginate in the virulence and epiphytic fitness of Pseudomonas syringae pv. syringae. Mol Microbiol. 1999, 33 (4): 712-720. 10.1046/j.1365-2958.1999.01516.x.
Article
CAS
PubMed
Google Scholar
Jha G, Rajeshwari R, Sonti RV: Functional interplay between two Xanthomonas oryzae pv, oryzae secretion systems in modulating virulence on rice. Mol Plant Microbe Interact. 2007, 20 (1): 31-40. 10.1094/MPMI-20-0031.
Article
CAS
PubMed
Google Scholar
Collmer A, Badel JL, Charkowski AO, Deng WL, Fouts DE, Ramos AR, Rehm AH, Anderson DM, Schneewind O, van Dijk K, Alfano JR: Pseudomonas syringae Hrp type III secretion system and effector proteins. Proc Natl Acad Sci U S A. 2000, 97 (16): 8770-8777. 10.1073/pnas.97.16.8770.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bender CL, Alarcon-Chaidez F, Gross DC: Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol Mol Biol Rev: MMBR. 1999, 63 (2): 266-292.
PubMed Central
CAS
PubMed
Google Scholar
Bjarnsholt T, Jensen PO, Jakobsen TH, Phipps R, Nielsen AK, Rybtke MT, Tolker-Nielsen T, Givskov M, Hoiby N, Ciofu O: Quorum sensing and virulence of Pseudomonas aeruginosa during lung infection of cystic fibrosis patients. PloS one. 2010, 5 (4): e10115-10.1371/journal.pone.0010115.
Article
PubMed Central
PubMed
Google Scholar
Brint JM, Ohman DE: Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR-RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR-LuxI family. J bacteriol. 1995, 177 (24): 7155-7163.
PubMed Central
CAS
PubMed
Google Scholar
Jones S, Yu B, Bainton NJ, Birdsall M, Bycroft BW, Chhabra SR, Cox AJ, Golby P, Reeves PJ, Stephens S, Winson MK, Salmond GPC, Stewart GSAB, Williams P: The lux autoinducer regulates the production of exoenzyme virulence determinants in Erwinia carotovora and Pseudomonas aeruginosa. The EMBO journal. 1993, 12 (6): 2477-2482.
PubMed Central
CAS
PubMed
Google Scholar
Passador L, Cook JM, Gambello MJ, Rust L, Iglewski BH: Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science. 1993, 260 (5111): 1127-1130. 10.1126/science.8493556.
Article
CAS
PubMed
Google Scholar
Quinones B, Dulla G, Lindow SE: Quorum sensing regulates exopolysaccharide production, motility, and virulence in Pseudomonas syringae. Mol Plant Microbe Interact. 2005, 18 (7): 682-693. 10.1094/MPMI-18-0682.
Article
CAS
PubMed
Google Scholar
Mattiuzzo M, Bertani I, Ferluga S, Cabrio L, Bigirimana J, Guarnaccia C, Pongor S, Maraite H, Venturi V: The plant pathogen Pseudomonas fuscovaginae contains two conserved quorum sensing systems involved in virulence and negatively regulated by RsaL and the novel regulator RsaM. Environ Microbiol. 2011, 13 (1): 145-162. 10.1111/j.1462-2920.2010.02316.x.
Article
CAS
PubMed
Google Scholar
Ballio A, Bossa F, Camoni L, Di Giorgio D, Flamand MC, Maraite H, Nitti G, Pucci P, Scaloni A: Structure of fuscopeptins, phytotoxic metabolites of Pseudomonas fuscovaginae. FEBS letters. 1996, 381 (3): 213-216. 10.1016/0014-5793(96)00043-9.
Article
CAS
PubMed
Google Scholar
Flamand MC, Pelsser S, Ewbank E, Maraite H: Production of syringotoxin and other bioactive peptides by Pseudomonas fuscovaginae. Physiol Mol Plant Pathol. 1996, 48 (4): 217-231. 10.1006/pmpp.1996.0019.
Article
CAS
Google Scholar
Patel HK, da Silva DP, Devescovi G, Maraite H, Paszkiewicz K, Studholme DJ, Venturi V: Draft genome sequence of Pseudomonas fuscovaginae, a broad-host-range pathogen of plants. J bacteriol. 2012, 194 (10): 2765-2766. 10.1128/JB.00341-12.
Article
PubMed Central
CAS
PubMed
Google Scholar
Grant SG, Jessee J, Bloom FR, Hanahan D: Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci U S A. 1990, 87 (12): 4645-4649. 10.1073/pnas.87.12.4645.
Article
PubMed Central
CAS
PubMed
Google Scholar
Figurski DH, Helinski DR: Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A. 1979, 76 (4): 1648-1652. 10.1073/pnas.76.4.1648.
Article
PubMed Central
CAS
PubMed
Google Scholar
Diorio C, Cai J, Marmor J, Shinder R, DuBow MS: An Escherichia coli chromosomal ars operon homolog is functional in arsenic detoxification and is conserved in gram-negative bacteria. J bacteriol. 1995, 177 (8): 2050-2056.
PubMed Central
CAS
PubMed
Google Scholar
Weerasinghe JP, Dong T, Schertzberg MR, Kirchhof MG, Sun Y, Schellhorn HE: Stationary phase expression of the arginine biosynthetic operon argCBH in Escherichia coli. BMC microbiology. 2006, 6: 14-10.1186/1471-2180-6-14.
Article
PubMed Central
PubMed
Google Scholar
Cunin R, Glansdorff N, Pierard A, Stalon V: Biosynthesis and metabolism of arginine in bacteria. Microbiol Rev. 1986, 50 (3): 314-352.
PubMed Central
CAS
PubMed
Google Scholar
Ramon-Maiques S, Marina A, Gil-Ortiz F, Fita I, Rubio V: Structure of acetylglutamate kinase, a key enzyme for arginine biosynthesis and a prototype for the amino acid kinase enzyme family, during catalysis. Structure. 2002, 10 (3): 329-342. 10.1016/S0969-2126(02)00721-9.
Article
CAS
PubMed
Google Scholar
Weingart H, Ullrich H, Geider K, Volksch B: The Role of Ethylene Production in Virulence of Pseudomonas syringae pvs. glycinea and phaseolicola. Phytopathology. 2001, 91 (5): 511-518. 10.1094/PHYTO.2001.91.5.511.
Article
CAS
PubMed
Google Scholar
Bronstein PA, Marrichi M, Cartinhour S, Schneider DJ, DeLisa MP: Identification of a twin-arginine translocation system in Pseudomonas syringae pv. tomato DC3000 and its contribution to pathogenicity and fitness. J bacteriol. 2005, 187 (24): 8450-8461. 10.1128/JB.187.24.8450-8461.2005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Caldelari I, Mann S, Crooks C, Palmer T: The Tat pathway of the plant pathogen Pseudomonas syringae is required for optimal virulence. Mol Plant Microbe Interact. 2006, 19 (2): 200-212. 10.1094/MPMI-19-0200.
Article
CAS
PubMed
Google Scholar
Venkatachalam KV, Akita H, Strott CA: Molecular cloning, expression, and characterization of human bifunctional 3'-phosphoadenosine 5'-phosphosulfate synthase and its functional domains. J Bioll Chem. 1998, 273 (30): 19311-19320. 10.1074/jbc.273.30.19311.
Article
CAS
Google Scholar
Alm RA, Bodero AJ, Free PD, Mattick JS: Identification of a novel gene, pilZ, essential for type 4 fimbrial biogenesis in Pseudomonas aeruginosa. J bacteriol. 1996, 178 (1): 46-53.
PubMed Central
CAS
PubMed
Google Scholar
Guzzo CR, Salinas RK, Andrade MO, Farah CS: PILZ protein structure and interactions with PILB and the FIMX EAL domain: implications for control of type IV pilus biogenesis. J Mol Biol. 2009, 393 (4): 848-866. 10.1016/j.jmb.2009.07.065.
Article
CAS
PubMed
Google Scholar
McCarthy Y, Ryan RP, O'Donovan K, He YQ, Jiang BL, Feng JX, Tang JL, Dow JM: The role of PilZ domain proteins in the virulence of Xanthomonas campestris pv. campestris. Mol Plant Pathol. 2008, 9 (6): 819-824. 10.1111/j.1364-3703.2008.00495.x.
Article
CAS
PubMed
Google Scholar
Fouhy Y, Lucey JF, Ryan RP, Dow JM: Cell-cell signaling, cyclic di-GMP turnover and regulation of virulence in Xanthomonas campestris. Res Microbiol. 2006, 157 (10): 899-904. 10.1016/j.resmic.2006.08.001.
Article
CAS
PubMed
Google Scholar
Bingle LE, Bailey CM, Pallen MJ: Type VI secretion: a beginner's guide. Curr Opin Microbiol. 2008, 11 (1): 3-8. 10.1016/j.mib.2008.01.006.
Article
CAS
PubMed
Google Scholar
Bonemann G, Pietrosiuk A, Mogk A: Tubules and donuts: a type VI secretion story. Mol Microbiol. 2010, 76 (4): 815-821. 10.1111/j.1365-2958.2010.07171.x.
Article
PubMed
Google Scholar
Cascales E: The type VI secretion toolkit. EMBO reports. 2008, 9 (8): 735-741. 10.1038/embor.2008.131.
Article
PubMed Central
CAS
PubMed
Google Scholar
Leiman PG, Basler M, Ramagopal UA, Bonanno JB, Sauder JM, Pukatzki S, Burley SK, Almo SC, Mekalanos JJ: Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc Natl Acad Sci U S A. 2009, 106 (11): 4154-4159. 10.1073/pnas.0813360106.
Article
PubMed Central
CAS
PubMed
Google Scholar
Records AR: The type VI secretion system: a multipurpose delivery system with a phage-like machinery. Mol Plant-microbe Interact: MPMI. 2011, 24 (7): 751-757. 10.1094/MPMI-11-10-0262.
Article
CAS
PubMed
Google Scholar
Pell LG, Kanelis V, Donaldson LW, Lynne Howell P, Davidson AR: The phage λ major tail protein structure reveals a common evolution for long-tailed phages and the type VI bacterial secretion system. Proc Natl Acad Sci. 2009, 106 (11): 4160-4165. 10.1073/pnas.0900044106.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wu HY, Chung PC, Shih HW, Wen SR, Lai EM: Secretome analysis uncovers an Hcp-family protein secreted via a type VI secretion system in Agrobacterium tumefaciens. J bacteriol. 2008, 190 (8): 2841-2850. 10.1128/JB.01775-07.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wichmann G, Sun J, Dementhon K, Glass NL, Lindow SE: A novel gene, phcA from Pseudomonas syringae induces programmed cell death in the filamentous fungus Neurospora crassa. Mol Microbiol. 2008, 68 (3): 672-689. 10.1111/j.1365-2958.2008.06175.x.
Article
CAS
PubMed
Google Scholar
Liu H, Coulthurst SJ, Pritchard L, Hedley PE, Ravensdale M, Humphris S, Burr T, Takle G, Brurberg MB, Birch PR, Salmond GPC, Toth IK: Quorum sensing coordinates brute force and stealth modes of infection in the plant pathogen Pectobacterium atrosepticum. PLoS Pathog. 2008, 4 (6): e1000093-10.1371/journal.ppat.1000093.
Article
PubMed Central
PubMed
Google Scholar
Scholz-Schroeder BK, Soule JD, Gross DC: The sypA, sypS, and sypC synthetase genes encode twenty-two modules involved in the nonribosomal peptide synthesis of syringopeptin by Pseudomonas syringae pv. syringae B301D. Mol Plant-microbe Interact: MPMI. 2003, 16 (4): 271-280. 10.1094/MPMI.2003.16.4.271.
Article
CAS
PubMed
Google Scholar
Feil H, Feil WS, Chain P, Larimer F, DiBartolo G, Copeland A, Lykidis A, Trong S, Nolan M, Goltsman E, Thiel J, Malfatti S, Loper JE, Lapidus A, Detter JC, Land M, Richardson PM, Kyrpides NC, Ivanova N, Lindow SE: Comparison of the complete genome sequences of Pseudomonas syringae pv. syringae B728a and pv. tomato DC3000. Proc Natl Acad Sci U S A. 2005, 102 (31): 11064-11069. 10.1073/pnas.0504930102.
Article
PubMed Central
CAS
PubMed
Google Scholar
Scholz-Schroeder BK, Soule JD, Lu SE, Grgurina I, Gross DC: A physical map of the syringomycin and syringopeptin gene clusters localized to an approximately 145-kb DNA region of Pseudomonas syringae pv. syringae strain B301D. Mol Plant-microbe Interact: MPMI. 2001, 14 (12): 1426-1435. 10.1094/MPMI.2001.14.12.1426.
Article
CAS
PubMed
Google Scholar
Vallet-Gely I, Novikov A, Augusto L, Liehl P, Bolbach G, Pechy-Tarr M, Cosson P, Keel C, Caroff M, Lemaitre B: Association of hemolytic activity of Pseudomonas entomophila, a versatile soil bacterium, with cyclic lipopeptide production. Appl Environ Microbiol. 2010, 76 (3): 910-921. 10.1128/AEM.02112-09.
Article
PubMed Central
CAS
PubMed
Google Scholar
Scholz-Schroeder BK, Hutchison ML, Grgurina I, Gross DC: The contribution of syringopeptin and syringomycin to virulence of Pseudomonas syringae pv. syringae strain B301D on the basis of sypA and syrB1 biosynthesis mutant analysis. Mol Plant-microbe Interact: MPMI. 2001, 14 (3): 336-348. 10.1094/MPMI.2001.14.3.336.
Article
CAS
PubMed
Google Scholar
Batoko H, De Kerchove D'Exaerde A, Kinet JM, Bouharmont J, Gage RA, Maraite H, Boutry M: Modulation of plant plasma membrane H+-ATPase by phytotoxic lipodepsipeptides produced by the plant pathogen Pseudomonas fuscovaginae. Biochim Biophys Acta. 1998, 1372 (2): 216-226. 10.1016/S0005-2736(98)00060-1.
Article
CAS
PubMed
Google Scholar
Menestrina G, Dalla Serra M, Comai M, Coraiola M, Viero G, Werner S, Colin DA, Monteil H, Prevost G: Ion channels and bacterial infection: the case of beta-barrel pore-forming protein toxins of Staphylococcus aureus. FEBS letters. 2003, 552 (1): 54-60. 10.1016/S0014-5793(03)00850-0.
Article
CAS
PubMed
Google Scholar
Xie G, Cui Z, Tao Z, Qiu H, Liu H, Ibrahim M, Zhu B, Jin G, Sun G, Almoneafy A, Li B: Genome sequence of the rice pathogen Pseudomonas fuscovaginae CB98818. J Bacteriol. 2012, 194 (19): 5479-5480. 10.1128/JB.01273-12.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sambrook JFE, Maniatis T: Molecular Cloning: A Laboratory Manual. 1989, Press CSHL. Cold Spring, Harbor, N.Y
Google Scholar
Birnboim HC: A rapid alkaline extraction method for the isolation of plasmid DNA. Methods Enzymol. 1983, 100: 243-255. 10.1016/0076-6879(83)00059-2.
Article
CAS
PubMed
Google Scholar
Better M, Lewis B, Corbin D, Ditta G, Helinski DR: Structural relationships among Rhizobium meliloti symbiotic promoters. Cell. 1983, 35 (2 Pt 1): 479-485. 10.1016/0092-8674(83)90181-2.
Article
CAS
PubMed
Google Scholar
O'Toole GA, Kolter R: Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol. 1998, 28 (3): 449-461. 10.1046/j.1365-2958.1998.00797.x.
Article
PubMed
Google Scholar
Alexeyev MF: The pKNOCK series of broad-host-range mobilizable suicide vectors for gene knockout and targeted DNA insertion into the chromosome of gram-negative bacteria. BioTechniques. 1999, 26 (5): 824--826, 828
CAS
PubMed
Google Scholar
Staskawicz B, Dahlbeck D, Keen N, Napoli C: Molecular characterization of cloned avirulence genes from race 0 and race 1 of Pseudomonas syringae pv. glycinea. J Bacteriol. 1987, 169 (12): 5789-5794.
PubMed Central
CAS
PubMed
Google Scholar