Dean R, van Kan JA, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD: The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol. 2012, 13: 414-430. 10.1111/j.1364-3703.2011.00783.x.
Article
PubMed
Google Scholar
Elad Y, Williamson B, Tudzynski P, Delen N: Botrytisspp. and diseases they cause in agricultural systems - An introduction. In Botrytis: Biology, Pathology and Control. Edited by Elad Y, Williamson B, Tudzynski P, Delen N. Dordrecht/Boston/London: Kluwer Academic Publishers; 2004:1-8.,
Amselem J, Cuomo CA, van Kan JAL, Viaud M, Benito EP, Couloux A, Coutinho PM, de Vries RP, Dyer PS, Fillinger S, Fournier E, Gout L, Hahn M, Kohn L, Lapalu N, Plummer KM, Pradier JM, Quévillon E, Sharon A, Simon A, ten Have A, Tudzynski B, Tudzynski P, Wincker P, Andrew M, Anthouard VÃ, Beever RE, Beffa R, Benoit I, Bouzid O, et al: Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet. 2011, 7: e1002230-10.1371/journal.pgen.1002230.
Article
PubMed Central
CAS
PubMed
Google Scholar
Staats M, van Kan JAL: Genome update of Botrytis cinerea strains B05.10 and T4. Eukaryot Cell. 2012, 11: 1413-1414. 10.1128/EC.00164-12.
Article
PubMed Central
CAS
PubMed
Google Scholar
Girard V, Cherrad S, Dieryckx C, Gonçalves I, Dupuy JW, Bonneu M, Rascle C, Job C, Job D, Vacher S: Proteomic analysis of proteins secreted by Botrytis cinerea in response to heavy metal toxicity. Metallomics. 2012, 4: 835-846. 10.1039/c2mt20041d.
Article
PubMed
Google Scholar
Li B, Wang W, Zong Y, Qin G, Tian S: Exploring pathogenic mechanisms of Botrytis cinerea secretome under different ambient pH based on comparative proteomic analysis. J Proteome Res. 2012, 11: 4249-4260. 10.1021/pr300365f.
Article
CAS
PubMed
Google Scholar
Espino JJ, Gutiérrez-Sánchez G, Brito N, Shah P, Orlando R, González C: The Botrytis cinerea early secretome. Proteomics. 2010, 10: 3020-3034. 10.1002/pmic.201000037.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fernández-Acero FJ, Colby T, Harzen A, Carbú M, Wieneke U, Cantoral JM, Schimdt J: 2-DE proteomic approach to the Botrytis cinerea secretome induced with different carbon sources and plant-based elicitors. Proteomics. 2010, 10: 2270-2280. 10.1002/pmic.200900408.
Article
PubMed
Google Scholar
Shah P, Gutiérrez-Sánchez G, Orlando R, Bergmann C: A proteomic study of pectin-degrading enzymes secreted by Botrytis cinerea grown in liquid culture. Proteomics. 2009, 9: 3126-3135. 10.1002/pmic.200800933.
Article
PubMed Central
CAS
PubMed
Google Scholar
Shah P, Atwood JA, Orlando R, El MH, Podila GK, Davis MR: Comparative proteomic analysis of Botrytis cinerea secretome. J Proteome Res. 2009, 8: 1123-1130. 10.1021/pr8003002.
Article
CAS
PubMed
Google Scholar
González-Fernández R, Aloria K, Valero-Galván J, Redondo I, Arizmendi JM, Jorrín-Novo JV: Proteomic analysis of mycelium and secretome of different Botrytis cinerea wild-type strains. J Proteomics. 2014, 97: 195-221. 10.1016/j.jprot.2013.06.022.
Article
PubMed
Google Scholar
Noda J, Brito N, González C: The Botrytis cinerea xylanase Xyn11A contributes to virulence with its necrotizing activity, not with its catalytic activity. BMC Plant Biol. 2010, 10: 38-10.1186/1471-2229-10-38.
Article
PubMed Central
PubMed
Google Scholar
Cuesta Arenas Y, Kalkman ERIC, Schouten A, Dieho M, Vredenbregt P, Uwumukiza B, Osés Ruiz M, van Kan JAL: Functional analysis and mode of action of phytotoxic Nep1-like proteins of Botrytis cinerea. Physiol Mol Plant Pathol. 2010, 74: 376-386. 10.1016/j.pmpp.2010.06.003.
Article
Google Scholar
Frías M, González C, Brito N: BcSpl1, a cerato-platanin family protein, contributes to Botrytis cinerea virulence and elicits the hypersensitive response in the host. New Phytol. 2011, 192: 483-495. 10.1111/j.1469-8137.2011.03802.x.
Article
PubMed
Google Scholar
Brito N, Espino JJ, González C: The endo-ß-1,4-xylanase Xyn11A is required for virulence in Botrytis cinerea. Mol Plant Microbe Interact. 2006, 19: 25-32. 10.1094/MPMI-19-0025.
Article
CAS
PubMed
Google Scholar
Kars I, Krooshof GH, Wagemakers L, Joosten R, Benen JAE, van Kan JAL: Necrotizing activity of five Botrytis cinerea endopolygalacturonases produced in Pichia pastoris. Plant J. 2005, 43: 213-225. 10.1111/j.1365-313X.2005.02436.x.
Article
CAS
PubMed
Google Scholar
ten Have A, Mulder W, Visser J, van Kan JA: The endopolygalacturonase gene Bcpg1 is required for full virulence of Botrytis cinerea. Mol Plant Microbe Interact. 1998, 11: 1009-1016. 10.1094/MPMI.1998.11.10.1009.
Article
CAS
PubMed
Google Scholar
Valette-Collet O, Cimerman A, Reignault P, Levis C, Boccara M: Disruption of Botrytis cinerea pectin methylesterase gene Bcpme1 reduces virulence on several host plants. Mol Plant Microbe Interact. 2003, 16: 360-367. 10.1094/MPMI.2003.16.4.360.
Article
CAS
PubMed
Google Scholar
Nafisi M, Stranne M, Zhang L, van Kan J, Sakuragi Y: The endo-arabinanase BcAra1 is a novel host-specific virulence factor of the necrotic fungal phytopathogen Botrytis cinerea. Mol Plant Microbe Interact. 2014, 27: 781-792. 10.1094/MPMI-02-14-0036-R.
Article
CAS
PubMed
Google Scholar
Goto M: Protein O-glycosylation in fungi: diverse structures and multiple functions. Biosci Biotechnol Biochem. 2007, 71: 1415-1427. 10.1271/bbb.70080.
Article
CAS
PubMed
Google Scholar
González M, Brito N, González C: High abundance of Serine/Threonine-rich regions predicted to be hyper-O-glycosylated in the extracellular proteins coded by eight fungal genomes. BMC Microbiol. 2012, 12: 213-10.1186/1471-2180-12-213.
Article
PubMed Central
PubMed
Google Scholar
Hutzler J, Schmid M, Bernard T, Henrissat B, Strahl S: Membrane association is a determinant for substrate recognition by PMT4 protein O-mannosyltransferases. Proc Natl Acad Sci U S A. 2007, 104: 7827-7832. 10.1073/pnas.0700374104.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fernández-Álvarez A, Marín-Menguiano M, Lanver D, Jiménez-Martín A, Elías-Villalobos A, Pérez-Pulido AJ, Kahmann R, Ibeas JI: Identification of O-mannosylated virulence factors in Ustilago maydis. PLoS Pathog. 2012, 8: e1002563-10.1371/journal.ppat.1002563.
Article
PubMed Central
PubMed
Google Scholar
Lommel M, Strahl S: Protein O-mannosylation: conserved from bacteria to humans. Glycobiology. 2009, 19: 816-828. 10.1093/glycob/cwp066.
Article
CAS
PubMed
Google Scholar
Loibl M, Wunderle L, Hutzler J, Schulz BL, Aebi M, Strahl S: Protein O-mannosyltransferases associate with the translocon to modify translocating polypeptide chains. J Biol Chem. 2014, 289: 8599-8611. 10.1074/jbc.M113.543116.
Article
PubMed Central
CAS
PubMed
Google Scholar
Girrbach V, Zeller T, Priesmeier M, Strahl-Bolsinger S: Structure-function analysis of the dolichyl phosphate-mannose: protein O-mannosyltransferase ScPmt1p. J Biol Chem. 2000, 275: 19288-19296. 10.1074/jbc.M001771200.
Article
CAS
PubMed
Google Scholar
Willer T, Amselgruber W, Deutzmann R, Strahl S: Characterization of POMT2, a novel member of the PMT protein O-mannosyltransferase family specifically localized to the acrosome of mammalian spermatids. Glycobiology. 2002, 12: 771-783. 10.1093/glycob/cwf086.
Article
CAS
PubMed
Google Scholar
González M, Brito N, Frías M, González C: Botrytis cinerea protein O-mannosyltransferases play critical roles in morphogenesis, growth, and virulence. PLoS ONE. 2013, 8: e65924-10.1371/journal.pone.0065924.
Article
PubMed Central
PubMed
Google Scholar
Strahl-Bolsinger S, Scheinost A: Transmembrane topology of Pmt1p, a member of an evolutionarily conserved family of protein O-mannosyltransferases. J Biol Chem. 1999, 274: 9068-9075. 10.1074/jbc.274.13.9068.
Article
CAS
PubMed
Google Scholar
ten Have A, Espino JJ, Dekkers E, Sluyter SCV, Brito N, Kay J, González C, van Kan JA: The Botrytis cinerea aspartic proteinase family. Fungal Genet Biol. 2010, 47: 53-65. 10.1016/j.fgb.2009.10.008.
Article
CAS
PubMed
Google Scholar
NetNGlyc 1.0. In ., [http://www.cbs.dtu.dk/services/NetNGlyc]
NetOGlyc 4.0. In ., [http://www.cbs.dtu.dk/services/NetOGlyc]
Steentoft C, Vakhrushev SY, Joshi HJ, Kong Y, Vester-Christensen MB, Schjoldager KT, Lavrsen K, Dabelsteen S, Pedersen NB, Marcos-Silva L, Gupta R, Bennett EP, Mandel U, Brunak S, Wandall HH, Levery SB, Clausen H: Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J. 2013, 32: 1478-1488. 10.1038/emboj.2013.79.
Article
PubMed Central
CAS
PubMed
Google Scholar
SignalP 4.1. In ., [http://www.cbs.dtu.dk/services/SignalP]
Petersen TN, Brunak S, von Heijne G, Nielsen H: SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods. 2011, 8: 785-786. 10.1038/nmeth.1701.
Article
CAS
PubMed
Google Scholar
SecretomeP 2.0. In ., [http://www.cbs.dtu.dk/services/SecretomeP]
Bendtsen JD, Jensen LJ, Blom N, von Heijne G, Brunak S: Feature-based prediction of non-classical and leaderless protein secretion. Protein Eng Des Sel. 2004, 17: 349-356. 10.1093/protein/gzh037.
Article
CAS
PubMed
Google Scholar
BLAST. In ., [http://blast.ncbi.nlm.nih.gov/Blast.cgi]
Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer ELL, Eddy SR, Bateman A: The Pfam protein families database. Nucl Acids Res. 2010, 38: D211-D222. 10.1093/nar/gkp985.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pfam. In ., [http://pfam.xfam.org/]
Frías M, Brito N, González M, González C: The phytotoxic activity of the cerato-platanin BcSpl1 resides in a two-peptide motif in the protein surface. Mol Plant Pathol. 2014, 15: 342-351. 10.1111/mpp.12097.
Article
PubMed
Google Scholar
Espino JJ, Brito N, Noda J, González C: Botrytis cinerea endo-ß-1,4-glucanase Cel5A is expressed during infection but is not required for pathogenesis. Physiol Mol Plant Pathol. 2005, 66: 213-221. 10.1016/j.pmpp.2005.06.005.
Article
CAS
Google Scholar
Zhang L, Kars I, Essenstam B, Liebrand TW, Wagemakers L, Elberse J, Tagkalaki P, Tjoitang D, van den Ackerveken G, van Kan JA: Fungal endopolygalacturonases are recognized as Microbe-Associated Molecular Patterns by the Arabidopsis receptor-like protein RESPONSIVENESS TO BOTRYTIS POLYGALACTURONASES 1. Plant Physiol. 2014, 164: 352-364. 10.1104/pp.113.230698.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gómez-Gómez L, Felix G, Boller T: A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. Plant J. 1999, 18: 277-284. 10.1046/j.1365-313X.1999.00451.x.
Article
PubMed
Google Scholar
Gómez-Gómez L, Boller T: FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell. 2000, 5: 1003-1011. 10.1016/S1097-2765(00)80265-8.
Article
PubMed
Google Scholar
Pfund C, Tans-Kersten J, Dunning FM, Alonso JM, Ecker JR, Allen C, Bent AF: Flagellin is not a major defense elicitor in Ralstonia solanacearum cells or extracts applied to Arabidopsis thaliana. Mol Plant Microbe Interact. 2004, 17: 696-706. 10.1094/MPMI.2004.17.6.696.
Article
CAS
PubMed
Google Scholar
Fernández-Álvarez A, Elías-Villalobos A, Ibeas JI: The O-mannosyltransferase PMT4 is essential for normal appressorium formation and penetration in Ustilago maydis. Plant Cell. 2009, 21: 3397-3412. 10.1105/tpc.109.065839.
Article
PubMed Central
PubMed
Google Scholar
Girrbach V, Strahl S: Members of the evolutionarily conserved PMT family of protein O-mannosyltransferases form distinct protein complexes among themselves. J Biol Chem. 2003, 278: 12554-12562. 10.1074/jbc.M212582200.
Article
CAS
PubMed
Google Scholar
Kriangkripipat T, Momany M: Aspergillus nidulans Pmts form heterodimers in all pairwise combinations. FEBS Open Bio. 2014, 4: 335-341. 10.1016/j.fob.2014.03.006.
Article
PubMed Central
CAS
PubMed
Google Scholar
Büttner P, Koch F, Voigt K, Quidde T, Risch S, Blaich R, Brückner B, Tudzynski P: Variations in ploidy among isolates of Botrytis cinerea: implications for genetic and molecular analyses. Curr Genet. 1994, 25: 445-450. 10.1007/BF00351784.
Article
PubMed
Google Scholar
Delcan J, Moyano C, Raposo R, Melgarejo P: Storage of Botrytis cinerea using different methods. J Plant Pathol. 2002, 84: 3-9.
Google Scholar
Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976, 72: 248-254. 10.1016/0003-2697(76)90527-3.
Article
CAS
PubMed
Google Scholar
Wessel D, Flügge UI: A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem. 1984, 138: 141-143. 10.1016/0003-2697(84)90782-6.
Article
CAS
PubMed
Google Scholar
Neuhoff V, Arold N, Taube D, Ehrhardt W: Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis. 1988, 9: 255-262. 10.1002/elps.1150090603.
Article
CAS
PubMed
Google Scholar
Clemente P, Peralta S, Cruz-Bermudez A, Echevarría L, Fontanesi F, Barrientos A, Fernandez-Moreno MA, Garesse R: hCOA3 stabilizes cytochrome c oxidase 1 (COX1) and promotes cytochrome c oxidase assembly in human mitochondria. J Biol Chem. 2013, 288: 8321-8331. 10.1074/jbc.M112.422220.
Article
PubMed Central
CAS
PubMed
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol. 1990, 215: 403-410. 10.1016/S0022-2836(05)80360-2.
Article
CAS
PubMed
Google Scholar
Schumacher J: Tools for Botrytis cinerea: New expression vectors make the gray mold fungus more accessible to cell biology approaches. Fungal Genet Biol. 2012, 49: 483-497. 10.1016/j.fgb.2012.03.005.
Article
CAS
PubMed
Google Scholar
Leroch M, Mernke D, Koppenhoefer D, Schneider P, Mosbach A, Doehlemann G, Hahn M: Living colors in the Gray Mold pathogen Botrytis cinerea: Codon-optimized genes encoding green fluorescent protein and mCherry, which exhibit bright fluorescence. Appl Environ Microbiol. 2011, 77: 2887-2897. 10.1128/AEM.02644-10.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mullins ED, Chen X, Romaine P, Raina R, Geiser DM, Kang S: Agrobacterium-mediated transformation of Fusarium oxysporum: an efficient tool for insertional mutagenesis and gene transfer. Phytopathology. 2001, 91: 173-180. 10.1094/PHYTO.2001.91.2.173.
Article
CAS
PubMed
Google Scholar
Hamada W, Reignault P, Bompeix G, Boccara M: Transformation of Botrytis cinerea with the hygromycin B resistance gene, hph. Curr Genet. 1994, 26: 251-255. 10.1007/BF00309556.
Article
CAS
PubMed
Google Scholar
van Kan JAL, van’t Klooster JW, Wagemakers CAM, Dees DCT, van der Vlugt-Bergmans CJB: Cutinase A of Botrytis cinerea is expressed, but not essential, during penetration of gerbera and tomato. Mol Plant Microbe Interact. 1997, 10: 30-38. 10.1094/MPMI.1997.10.1.30.
Article
CAS
PubMed
Google Scholar
Clough SJ, Bent AF: Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998, 16: 735-743. 10.1046/j.1365-313x.1998.00343.x.
Article
CAS
PubMed
Google Scholar