Kauffman CA: Fungal infections. Proc Am Thoracic Soc. 2006, 3: 35-40. 10.1513/pats.200510-110JH.
Article
CAS
Google Scholar
Colombo AL, Nucci M, Park BJ, Noue'R SA, Arthington-Skaggs B, Matta DA, Warnock D, Morgan J: Epidemiology of candidemia in Brazil: a nationwide sentinel surveillance of candidemia in eleven medical centers. J Clin Microbiol. 2006, 44: 2816-2823. 10.1128/JCM.00773-06.
Article
CAS
PubMed Central
PubMed
Google Scholar
Pappas PG, Rex JH, Sobel JD, Filler SG, Dismukes WE, Walsh TJ, Edwards JE: Guidelines of treatment of candidiasis. Clin Infect Dis. 2004, 38: 161-189. 10.1086/380796.
Article
PubMed
Google Scholar
Odds FC, Brown AJ, Gow NA: Antifungal agents: Mechanism of action. Trends Microbiol. 2003, 11: 272-279. 10.1016/S0966-842X(03)00117-3.
Article
CAS
PubMed
Google Scholar
Pasqualotto AC, Denning DW: New and emerging treatments for fungal infections. J Antimicrob Chemother. 2008, 61 (Suppl 1): i19-i30. 10.1093/jac/dkm428.
Article
CAS
PubMed
Google Scholar
Barret-Bee K, Ryder NS: Biochemical aspects of ergosterol biosynthesis inhibition. Emerging targets in antibacterial and antifungal chemotherapy. Edited by: Sutcliffe J, Georgopapadakou NH. 1992, New York: Chapman & Hall, 410-436.
Chapter
Google Scholar
Burbiel J, Bracher F: Azasteroids as antifungals. Steroids. 2003, 68: 587-594. 10.1016/S0039-128X(03)00080-1.
Article
CAS
PubMed
Google Scholar
Oehlschlager AC, Czyzewska E: Rationally designed inhibitors of sterol biosynthesis. Emerging targets in antibacterial and antifungal chemotherapy. Edited by: Sutcliffe J, Georgopapadakou NH. 1992, New York: Chapman & Hall, 437-475.
Chapter
Google Scholar
Song Z, Nes WD: Sterol biosynthesis inhibitors: Potential for transition state analogs and mechanism-based inactivators targeted at sterol methyltransferase. Lipids. 2007, 42: 15-33. 10.1007/s11745-006-3017-1.
Article
CAS
PubMed
Google Scholar
Urbina JA, Vivas J, Visbal G, Contreras LM: Modification of the composition of Trypanosoma (Schizotrypanum) cruzi epimastigotes by Δ24(25) sterol methyltransferase inhibitors and their combinations with ketoconazole. Mol Biochem Parasitol. 1995, 73: 199-210. 10.1016/0166-6851(95)00117-J.
Article
CAS
PubMed
Google Scholar
Rodrigues JCF, Bernardes CF, Visbal G, Urbina JA, Vercesi AE, de Souza W: Sterol methenyl transferase inhibitors alter the ultrastructure and function of the Leishmania amazonensis mitochondrion leading to potent growth inhibition. Protist. 2007, 158: 447-456. 10.1016/j.protis.2007.05.004.
Article
CAS
PubMed
Google Scholar
Rodrigues JCF, Attias M, Rodriguez C, Urbina JA, de Souza W: Ultrastructural and biochemical alterations induced by 22,26-azasterol, a Δ24(25)-sterol methyltransferase inhibitor, on promastigote and amastigote forms of Leishmania amazonensis. Antimicrob Agents Chemother. 2002, 46: 487-499. 10.1128/AAC.46.2.487-499.2002.
Article
CAS
PubMed Central
PubMed
Google Scholar
Urbina JA, Visbal G, Contreras LM, Mclaughlin G, Docampo R: Inhibitors of D24(25) sterol methyltransferase block sterol synthesis and cell proliferation in Pneumocystis carinii. Antimicrob Agents Chemother. 1997, 41: 1428-1432.
CAS
PubMed Central
PubMed
Google Scholar
Visbal G, Alvarez A, Moreno B, San-Blas G: S-adenosyl-L-methionine inhibitors Δ24-sterol methyltransferase and Δ24(28)-sterol methylreductase as possible agents against Paracoccidioides brasiliensis. Antimicrob Agents Chemother. 2003, 47: 2966-2970. 10.1128/AAC.47.9.2966-2970.2003.
Article
CAS
PubMed Central
PubMed
Google Scholar
Borg-von Zepelin M, Kunz L, Rüchel R, Reichard U, Weig M, Groß U: Epidemiology and antifungal susceptibilities of Candida spp. to six antifungal agents: results from a surveillance study on fungaemia in Germany from July to August 2005. J Antimicrob Chemother. 2007, 60: 424-428. 10.1093/jac/dkm145.
Article
CAS
PubMed
Google Scholar
Godoy P, Tiraboschi IN, Severo LC, Bustamante B, Calvo B, Almeida LP, da Matta DA, Colombo AL: Species distribution and antifungal susceptibility profile of Candida spp. bloodstream isolates from Latin American hospitals. Mem Inst Oswaldo Cruz. 2003, 98: 401-405. 10.1590/S0074-02762003000300020.
Article
CAS
PubMed
Google Scholar
Tortorano AM, Kibbler C, Peman J, Bernhardt H, Klingspor L, Grillot R: Candidaemia in Europe: epidemiology and resistance. Int J Antimicrob Agents. 2006, 27: 359-366. 10.1016/j.ijantimicag.2006.01.002.
Article
CAS
PubMed
Google Scholar
Almirante B, Rodriguez D, Park BJ, Cuenca-Estrella M, Planes AM, Almela M, Mensa J, Sanchez F, Ayats J, Gimenez M, Saballs P, Fridkin SK, Morgan J, Rodriguez-Tudela JL, Warnock DW, Pahissa A: Epidemiology and predictors of mortality in cases of Candida bloodstream infection: results from population-based surveillance, Barcelona, Spain, from 2000 to 2003. J Clin Microbiol. 2005, 43: 1829-1835. 10.1128/JCM.43.4.1829-1835.2005.
Article
PubMed Central
PubMed
Google Scholar
Ostrosky-Zeichner L, Rex JH, Pappas PG, Hamill RJ, Larsen RA, Horowitz HW, Powderly WG, Hyslop N, Kauffman CA, Cleary J, Mangino JE, Lee J: Antifungal susceptibility survey of 2,000 bloodstream Candida isolates in the United States. Antimicrob Agents Chemother. 2003, 47: 3149-3154. 10.1128/AAC.47.10.3149-3154.2003.
Article
CAS
PubMed Central
PubMed
Google Scholar
Georgopapadakou NH, Dix BA, Smith SA, Freudenberger J, Funke PT: Effect of antifungal agents on lipid biosynthesis and membrane integrity in Candida albicans. Antimicrob Agents Chemother. 1987, 31: 46-51.
Article
CAS
PubMed Central
PubMed
Google Scholar
Hays PR, Parks LW, Pierce HD, Oehlschlager AC: Accumulation of ergosta-8,14-dien-3beta-ol by Saccharomyces cerevisae cultured with an azasterol antimycotic agent. Lipids. 1977, 12: 666-668. 10.1007/BF02533762.
Article
CAS
PubMed
Google Scholar
Oehlschlager AC, Angus RH, Pierce AM, Srinivasan R: Azasterol inhibition of Δ24-sterol methyltransferase in Saccharomyces cerevisae. Biochemistry. 1984, 23: 3582-3589. 10.1021/bi00311a003.
Article
CAS
PubMed
Google Scholar
Dantas-Leite LRV, Urbina JA, de Souza W, Vommaro RC: Selective anti-Toxoplasma gondii activities of azasterols. Int J Antimicrob Agents. 2004, 23: 620-626. 10.1016/j.ijantimicag.2003.11.005.
Article
CAS
PubMed
Google Scholar
Maia C, Attias M, Urbina JA, Gilbert I, Magaraci F, de Souza W: Azasterols impair Giardia lamblia proliferation and induces encystation. Biochem Biophys Res Commun. 2007, 363: 310-316. 10.1016/j.bbrc.2007.08.174.
Article
CAS
PubMed
Google Scholar
Bellanger P, Nast CC, Fratti R, Sanati H, Ghannoum M: Voriconazole (UK-109,496) inhibits the growth and alters the morphology of fluconazole-susceptible and -resistant Candida species. Antimicrob Agents Chemother. 1997, 41: 1840-1842.
Google Scholar
Koul A, Vitullo J, Reyes G, Ghannoum M: Effects of voriconazole on Candida glabrata in vitro. J Antimicrob Chemother. 1999, 44: 109-112. 10.1093/jac/44.1.109.
Article
CAS
PubMed
Google Scholar
Borges M, Ven Van de MA: Degenerative changes after itraconzole treatment. Rev Infect Dis. 1987, 9 (Suppl 1): S33-42.
Article
Google Scholar
Hazen KC, Mandell G, Coleman E, Giangqin W: Influence of fluconazole at subinhibitory concentrations on cell surface hydrophobicity and phagocytosis of Candida albicans. FEMS Microbiology Letters. 2000, 183: 89-94. 10.1111/j.1574-6968.2000.tb08938.x.
Article
CAS
PubMed
Google Scholar
Phillips A, Sudbery I, Ramsdale M: Apoptosis induced by environmental stresses and amphotericin B in Candida albicans. Proc Natl Acad Sci USA. 2003, 100: 14327-14332. 10.1073/pnas.2332326100.
Article
CAS
PubMed Central
PubMed
Google Scholar
Bahmed K, Bonaly R, Benallaoua S, Coulon J: Effect of sub-inhibitory concentrations of amphotericin B on the yeast surface and phagocytic killing activity. Process Biochem. 2005, 40: 759-765. 10.1016/j.procbio.2004.02.002.
Article
CAS
Google Scholar
Vivas JJ, Urbina JA, de Souza W: Ultrastructural alterations in Trypanosoma (Schizotrypanum) cruzi induced by Δ24(25)-sterol methyltransferase inhibitors and their combinations with ketoconazole. Int J Antimicrob Agents. 1996, 7: 235-240. 10.1016/S0924-8579(96)00325-1.
Article
CAS
PubMed
Google Scholar
Mariante RM, Guimarães CA, Linden R, Benchimol M: Hydrogen peroxide induces caspase activation and programmed cell death in the amitochondrial Tritrichomonas foetus. Histochem Cell Biol. 2003, 120: 129-141. 10.1007/s00418-003-0548-x.
Article
CAS
PubMed
Google Scholar
Dahl C, Biemannt HP, Dahl J: A protein kinase antigenically related to pp6Ov-src possibly involved in yeast cell cycle control: Positive in vivo regulation by sterol. Proc Natl Acad Sci USA. 1987, 84: 4012-4016. 10.1073/pnas.84.12.4012.
Article
CAS
PubMed Central
PubMed
Google Scholar
Sardari S, Mori Y, Kurosawa T, Daneshtalab M: Modulatory effect of cAMP on fungal ergosterol level and inhibitory activity of azole drugs. Can J Microbiol. 2003, 49: 344-349. 10.1139/w03-045.
Article
CAS
PubMed
Google Scholar
Pacchierotti F, Bassani B, Marchetti F, Tiveron C: Griseofulvin induces mitotic delay and aneuploidy in bone marrow cells of orally treated mice. Mutagenesis. 2002, 17: 219-222. 10.1093/mutage/17.3.219.
Article
CAS
PubMed
Google Scholar
Panda D, Rathinasamy K, Santra MK, Wilson L: Kinetic suppression of microtubule dynamic instability by griseofulvin: Implications for its possible use in the treatment of cancer. Proc Natl Acad Sci USA. 2005, 102: 9878-9883. 10.1073/pnas.0501821102.
Article
CAS
PubMed Central
PubMed
Google Scholar
Shaw SL, Yeh E, Maddox P, Salmon ED, Bloom K: Astral microtubule dynamics in yeast: A microtubule-based searching mechanism for spindle orientation and nuclear migration into the bud. J Cell Biol. 1997, 139: 985-994. 10.1083/jcb.139.4.985.
Article
CAS
PubMed Central
PubMed
Google Scholar
Palmié-Peixoto IV, Rocha M, Urbina JA, de Souza W, Einicker-Lamas M, Motta MC: Effects of sterol biosynthesis inhibitors on endosymbiont-bearing trypanosomatids. FEMS Microbiol Letters. 2006, 255: 33-42. 10.1111/j.1574-6968.2005.00056.x.
Article
Google Scholar
Urbina JA, Vivas J, Lazardi K, Molina J, Payares G, Piras MM, Piras R: Antiproliferative effects of delta 24(25) sterol methyl transferase inhibitors on Trypanosoma (Schizotrypanum) cruzi: in vitro and in vivo studies. Chemotherapy. 1996, 42 (4): 294-307.
Article
CAS
PubMed
Google Scholar
Lorente SO, Rodrigues JC, Jimenez C, Joyce-Menekse M, Rodrigues C, Croft SL, Yardley V, de Luca-Fradley K, Ruiz-Perez LM, Urbina J, de Souza W, Gonzalez Pacanowska D, Gilbert IH: Novel azasterols as potential agents for treatment of leishmaniasis and trypanosomiasis. Antimicrob Agents Chemother. 2004, 48: 2937-2950. 10.1128/AAC.48.8.2937-2950.2004.
Article
PubMed Central
PubMed
Google Scholar
Gros L, Castillo-Costa VM, Jiménez CJ, Sealey-Cardona M, Vargas S, Estevez AM, Yardley V, Rattray L, Croft SL, Ruiz-Perez LM, Urbina JA, Gilbert IH, González-Pacanowska D: New azasterols against Trypanosoma brucei: role of 24-sterol methyltransferase in inhibitor action. Antimicrob Agents Chemother. 2006, 50: 2595-2601. 10.1128/AAC.01508-05.
Article
CAS
PubMed Central
PubMed
Google Scholar
Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts. Approved Standard. CLSI, Wayne, PA, USA; Clinical and Laboratory Standards Institute, M27-A3, Third
Nguyen MH, Clancy CL, Yu VL, Yu YC, Morris AJ, Snydman DR, Sutton DA, Rinaldi MG: Do in vitro susceptibility data predict the microbiologic response to amphotericin B? Results of a prospective study of patients with Candida fungaemia. J Infect Dis. 1998, 177: 425-30.
Article
CAS
PubMed
Google Scholar
Ishida K, Mello JCP, Cortez DAG, Dias Filho BP, Ueda-Nakamura T, Nakamura CV: Influence of tannins from Stryphnodendro adstringens on growth and virulence factors of Candida albicans. J Antimicrobial Chemother. 2006, 58: 942-949. 10.1093/jac/dkl377.
Article
CAS
Google Scholar
Lin Z, Hoult J, Raman A: Sulforhodamine B assay for measuring proliferation of a pigmented melanocyte cell line and its application to the evaluation of crude drugs used in the treatment of vitiligo. J Ethnopharmacol. 1999, 66: 141-150. 10.1016/S0378-8741(98)00199-8.
Article
CAS
PubMed
Google Scholar