Hoffmann JA: Phylogenetic perspectives in innate immunity. Science. 1999, 284 (5418): 1313-1318. 10.1126/science.284.5418.1313.
Article
PubMed
CAS
Google Scholar
Bulet P, Stocklin R, Menin L: Anti-microbial peptides from invertebrates to vertebrates. Immunol Rev. 2004, 198: 169-184. 10.1111/j.0105-2896.2004.0124.x.
Article
PubMed
CAS
Google Scholar
Otvos L: Insect peptides with improved protease-resistance protect mice against bacterial infection. Protein Sci. 2000, 9 (4): 742-749.
Article
PubMed
CAS
PubMed Central
Google Scholar
Vigers AJ, Roberts WK, Selitrennikoff CP: A new family of plant antifungal proteins. Mol Plant Microbe Interact. 1991, 4: 315-323. 10.1094/MPMI-4-315.
Article
PubMed
CAS
Google Scholar
Sela-Buurlage MB, Ponstein AS, Bres-Vloemans SA, Melchers LS, Van Den Elzen P, Cornelissen B: Only specific tobacco (Nicotiana tabacum) chitinases and [beta]-1,3- glucanases exhibit antifungal activity. Plant Physiol. 1993, 101: 857-863.
PubMed
CAS
PubMed Central
Google Scholar
Ho VS, Wong JH, Ng TB: A thaumatin-like antifungal protein from the emperor banana. Peptides. 2007, 28: 760-766. 10.1016/j.peptides.2007.01.005.
Article
PubMed
CAS
Google Scholar
Wong JH, Zhang XQ, Wang HX, Ng TB: A mitogenic defensin from white cloud beans (Phaseolus vulgaris). Peptides. 2006, 27: 2075-2081. 10.1016/j.peptides.2006.03.020.
Article
PubMed
CAS
Google Scholar
Ng TB, Parkash A: Hispin, a novel ribosome inactivating protein with antifungal activity from hairy melon seeds. Protein Expr Pur. 2002, 26: 211-217. 10.1016/S1046-5928(02)00511-9.
Article
CAS
Google Scholar
Wang SY, Wu JH, Ng TB, Ye XY, Rao PF: A non-specific lipid transfer protein with antifungal and antibacterial activities from the mung bean. Peptides. 2004, 25: 1235-1242. 10.1016/j.peptides.2004.06.004.
Article
PubMed
CAS
Google Scholar
Yang X, Li J, Wang X, Fang W, Bidochka MJ, She R, Xiao Y, Pei Y: Psc-AFP, an antifungal protein with trypsin inhibitor activity from Psoralea corylifoliaseeds. Peptides. 2006, 27: 1726-1731. 10.1016/j.peptides.2006.01.020.
Article
PubMed
CAS
Google Scholar
Daniel JS, Christopher AH, Carol M, Sibley CM: Current and Emerging Azole Antifungal Agents. Clin Microbiol Rev. 1999, 12 (1): 40-79.
Google Scholar
Gozalbo D, Roig P, Villamón E, Gil ML: Candida and Candidiasis: the cell wall as a potential molecular target for antifungal therapy. Curr Drug Targets Infect Disord. 2004, 4: 117-135. 10.2174/1568005043341046.
Article
PubMed
CAS
Google Scholar
Mishra NN, Tulika P, Neeraj S, Anurag P, Rajendra P, Dwijendra KG, Randhir S: Pathogenicity and drug resistance in Candida albicans and other yeast species. Acta Microbiol Immunol Hung. 2007, 54 (3): 201-235. 10.1556/AMicr.54.2007.3.1.
Article
PubMed
CAS
Google Scholar
Priscu JC, Adams EE, Lyons WB, Voytek MA, Mogk D, Brown R, McKay CP, Takacs CD, Welch KA, Wolf CF, Kirshtein JD, Avci R: Geomicrobiology of subglacial ice above Lake Vostok. Antarct Sci. 1999, 286: 2141-2144.
CAS
Google Scholar
De Vuyst L, Foulquie Moreno MR, Revets H: Screening for enterocins and detection of hemolysin and vancomycin resistance in enterococci of different origins. Int J Food Microbiol. 2003, 84: 299-318. 10.1016/S0168-1605(02)00425-7.
Article
PubMed
CAS
Google Scholar
Leroy F, De Vuyst L: Bacteriocin production by Enterococcus faecium RZS C5 is cell density limited and occurs in the very early growth phase. Int J Food Microbiol. 2002, 72: 155-164. 10.1016/S0168-1605(01)00635-3.
Article
PubMed
CAS
Google Scholar
Pantev A, Valcheva R, Danova S, Ivanova I, Minkov I, Haertle T: Effect of enterococcin A 2000 on biological and synthetic phospholipid membranes. Int J Food Microbiol. 2003, 80: 145-152. 10.1016/S0168-1605(02)00143-5.
Article
PubMed
CAS
Google Scholar
Audisio MC, Oliver G, Apella MC: Protective effect of Enterococcus faecium J96, a potential probiotic strain, on chicks infected with Salmonella pullorum. J Food Prot. 2000, 63: 1333-1337.
Google Scholar
Shekh RM, Singh P, Singh SM, Roy U: Antifungal activity of Arctic and Antarctic bacteria isolates. Polar Biol. 2011, 34: 139-143. 10.1007/s00300-010-0854-4.
Article
Google Scholar
Cheng S, McCleskey FK, Gress MJ, Petroziello JM, Liu R, Namdari H, Beninga K, Salmen A, DelVecchio VG: A PCR Assay for Identification of Enterococcus faecium. J Clinical Microbiol. 1997, 35: 1248-1250.
CAS
Google Scholar
Balla E, Dicks LMT, Du Toit M, van der Merwe MJ, Holzapfel WH: Characterization and cloning of the genes encoding enterocin 1071A and enterocin 1071B, two antimicrobial peptides produced by Enterococcus faecalis BFE 1071. Appl Env Microbiol. 2000, 66: 1298-1304. 10.1128/AEM.66.4.1298-1304.2000.
Article
CAS
Google Scholar
Franz CMAP, Grube A, Herrmann A, Abriouel H, Starke J, Lombardi A, Tauscher B, Holzapfel WH: Biochemical and genetic characterization of the two-peptide bacteriocin enterocin 1071 produced by Enterococcus faecalis FAIR-E 309. Appl Env Microbiol. 2002, 68: 2550-2554. 10.1128/AEM.68.5.2550-2554.2002.
Article
CAS
Google Scholar
Maldonado-Barragan A, Caballero-Guerrero B, Jimeneza E, Jimenez-Diaz R, Ruiz-Barba JL, Rodriguez JM: Enterocin C. a class IIb bacteriocin produced by E. faecalis C901, a strain isolated from human colostrums. Int J Food Microbiol. 2009, 133: 105-112. 10.1016/j.ijfoodmicro.2009.05.008.
Article
PubMed
CAS
Google Scholar
Ennahar S, Asou Y, Zendo T, Sanomoto K, Ishizaki A: Biochemical and genetic evidence for production of enterocins A and B by Enterococcus faecium WHE 81. Int J Food Microbiol. 2001, 70: 291-301. 10.1016/S0168-1605(01)00565-7.
Article
PubMed
CAS
Google Scholar
Matejuk A, Leng Q, Begum MD, Woodle MC, Scaria P, Chou ST, Mixson AJ: Peptide based Antifungal Therapies against Emerging Infections. Drugs Fut. 2010, 35 (3): 197-
Article
CAS
Google Scholar
Giraffa G: Functionality of enterococci in dairy products. Int J Food Microbiol. 2003, 88: 215-222. 10.1016/S0168-1605(03)00183-1.
Article
PubMed
CAS
Google Scholar
Hugas M, Garriga M, Aymerich MT: Functionalty of enterococci in meat products. Int J Food Microbiol. 2003, 88: 223-233. 10.1016/S0168-1605(03)00184-3.
Article
PubMed
CAS
Google Scholar
Lucca AJD, Walsh TJ: Antifungal Peptides, Novel Therapeutic Compounds against Emerging Pathogens. Antimicrob Agents Chemother. 1999, 43: 1-11.
PubMed
PubMed Central
Google Scholar
Landy M, Warren GH, Roseman SB, Colio LG: Bacillomycin, 584 an antibiotic from Bacillus subtilis active against pathogenic fungi. Proc Soc Exp Biol Med. 1948, 67: 539-541.
Article
PubMed
CAS
Google Scholar
Mhammedi A, Peypoux F, Besson F, Michel G: Bacillomycin F, a new antibiotic of iturin group isolation and characterization. J Antibiot. 1982, 35: 306-311. 10.7164/antibiotics.35.306.
Article
PubMed
CAS
Google Scholar
Billstein SA: How the pharmaceutical industry brings an antibiotic drug to market in the United States. Antimicrob Agents Chemother. 1994, 38: 2679-2682. 10.1128/AAC.38.12.2679.
Article
PubMed
CAS
PubMed Central
Google Scholar
Latoud C, Peypoux F, Michel G, Genet R, Morgat JL: Interactions of antibiotics of the iturin group with human erythrocytes. Biochim Biophys Acta. 1986, 856: 526-535. 10.1016/0005-2736(86)90144-6.
Article
PubMed
CAS
Google Scholar
Ostrosky-Zeichner L: Deeply invasive candidiasis. Infect Dis Clin North Am. 2002, 16 (4): 821-835. 10.1016/S0891-5520(02)00034-X.
Article
PubMed
Google Scholar
Venkatesan P, Perfect JR, Myers SA: Evaluation and management of fungal infections in immunocompromised patients. Dermatol Ther. 2005, 18 (1): 44-57. 10.1111/j.1529-8019.2005.05001.x.
Article
PubMed
Google Scholar
Prasad R, Kapoor K: Multidrug resistance in yeast Candida. Int Rev Cytol. 2005, 242: 215-248.
Article
PubMed
CAS
Google Scholar
Chandrasekar PH, Cutright J, Manavathu E: Efficacy of voriconazole against invasive pulmonary aspergillosis in a guinea-pig model. J Antimicrob Chemother. 2000, 45 (5): 673-676. 10.1093/jac/45.5.673.
Article
PubMed
CAS
Google Scholar
Perea S, Patterson TF: Antifungal resistance in pathogenic fungi. Clin Infect Dis. 2002, 35 (9): 1073-1080. 10.1086/344058.
Article
PubMed
Google Scholar
Hernandez S: Caspofungin resistance in Candida albicans: correlating clinical outcome with laboratory susceptibility testing of three isogenic isolates serially obtained from a patient with progressive Candida esophagitis. Antimicrob Agents Chemother. 2004, 48 (4): 1382-1383. 10.1128/AAC.48.4.1382-1383.2004.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hakki M, Staab JF, Marr KA: Emergence of a Candida krusei isolate with reduced susceptibility to caspofungin during therapy. Antimicrob Agents Chemother. 2006, 50 (7): 2522-2524. 10.1128/AAC.00148-06.
Article
PubMed
CAS
PubMed Central
Google Scholar
Thompson GR: Development of caspofungin resistance following prolonged therapy for invasive candidiasis secondary to Candida glabrata infection. Antimicrob Agents Chemother. 2008, 52 (10): 3783-3785. 10.1128/AAC.00473-08.
Article
PubMed
CAS
PubMed Central
Google Scholar
Tabbene O, Kalai L, Slimene IB, Karkouch I, Elkahoui S, Gharbi A, Cosette P, Mangoni ML, Jouenne T, Limam F: Anti-Candida effect of bacillomycin D-like lipopeptides from Bacillus subtilis B38. FEMS Resear let. 2011, 316: 108-114. 10.1111/j.1574-6968.2010.02199.x.
Article
CAS
Google Scholar
Yanagida F, Chen Y, Onda T, Shinohara T: Durancin L28-1A, a new bacteriocin from Enterococcus durans L28-1, isolated from soil. Lett Appl Microbiol. 2005, 40: 430-435. 10.1111/j.1472-765X.2005.01693.x.
Article
PubMed
CAS
Google Scholar
De Kwaadsteniet M, Todorov SD, Knoetze H, Dicks LMT: Characterization of a 3944 Da bacteriocin, produced by Enterococcus mundtii ST15, with activity against Gram-positive and Gram-negative bacteria. Int J Food Microbiol. 2005, 105: 433-444. 10.1016/j.ijfoodmicro.2005.03.021.
Article
PubMed
CAS
Google Scholar
Ferreira AE, Canal N, Morales D, Fuentefria DB, Corcao G: Characterization of Enterocins Produced by Enterococcus mundtii Isolated from Humans Feces. Brazilian Arch Biol Technol. 2007, 50: 249-258.
Google Scholar
Losteinkit C, Uchaiyama K, Ochi S, Takaoka T, Nagahisa K, Shioya S: Characterization of Bacteriocin N15 produced by Enterococcus faeciumN15 and Cloning of the Related Genes. J Biosc Bioeng. 2001, 91: 390-395.
Article
CAS
Google Scholar
Atrih A, Rekhif N, Moir AJG, Lebrihi A, Lefebvre G: Mode of action, purification and amino acid sequence of plantaricin C19, an anti-Listeria bacteriocin produced by Lactobacillus plantarum C19. Int J Food Microbiol. 2001, 68: 93-104. 10.1016/S0168-1605(01)00482-2.
Article
PubMed
CAS
Google Scholar
Hernandez D, Cardell E, Zarate V: Antimicrobial activity of lactic acid bacteria isolated from Tenerife cheese: initial characterization of plantaricin TF711, a bacteriocin-like substance produced by Lactobacillus plantarum TF711. J Appl Microbiol. 2005, 99: 77-84. 10.1111/j.1365-2672.2005.02576.x.
Article
PubMed
CAS
Google Scholar
Bizani D, Brandelli A: Characterization of a bacteriocin produced by a newly isolated Bacillus sp. Starin 8A. J Appl Microb. 2002, 93: 512-519. 10.1046/j.1365-2672.2002.01720.x.
Article
CAS
Google Scholar
Jianhua X, Rijun Z, Changjiang S, Yaoqi G: Isolation and characterization of a bacteriocin produced by an isolated Bacillus subtilis LFB112 that exhibits antimicrobial activity against domestic animal pathogens. African j Biotechnol. 2009, 8: 5611-5619.
Google Scholar
Hastings W, Sailerm M, Johnsonk K, Roy KL, Vederas JC, Stiles ME: Characterization of Leucocin A-UAL 187 and cloning of the bacteriocin gene from Leuconostoc gelidum. J Bacteriol. 1991, 173: 7491-7500.
PubMed
CAS
PubMed Central
Google Scholar
Kim DH, Lee DG, Kim KL, Lee Y: Internalization of tenecin 3 by a fungal cellular process is essential for its fungicidal effect on Candida albicans. Eur J Biochem. 2001, 268: 4449-4458. 10.1046/j.1432-1327.2001.02364.x.
Article
PubMed
CAS
Google Scholar
Bulet P, Cociancich S, Dimarcq JL, Lambert J, Reichhart JM, Hoffmann D, Hetru C, Hoffmann JA: Insect immunity: Isolation from a coleopteran insect of a novel inducible antibacterial peptide and of new members of the insect defensin family. J Biol Chemistry. 1991, 266: 24520-24525.
CAS
Google Scholar
Otero-Gonzalez AJ, Magalhaes BS, Garcia-Villarino M, Lopez-Abarrategui C, Sousa DA, Dias SC, Franco OL: Antimicrobial peptides from marine invertebrates as a new frontier for microbial infection control. FASEB J. 2010, 24: 1320-1334. 10.1096/fj.09-143388.
Article
PubMed
CAS
Google Scholar
Rodriguez A, Villegas E, Satake H, Possani LD, Corzo G: Amino acid substitutions in an alpha-helical antimicrobial arachnid peptide affect its chemical properties and biological activity towards pathogenic bacteria but improve its therapeutic index. Amino Acids. 2011, 40: 61-68. 10.1007/s00726-009-0449-y.
Article
PubMed
CAS
Google Scholar
Cordes FS, Bright JN, Sansom MSP: Proline-induced distortions of transmembrane helices. J Mol Biol. 2002, 323: 951-960. 10.1016/S0022-2836(02)01006-9.
Article
PubMed
CAS
Google Scholar
Capinera JL: Encyclopedia of Entomology. 2008, Springer, 2
Book
Google Scholar
Dempsey CE, Bazzo R, Harvey TS, Syperek I, Boheim G, Campbel ID: Contribution of proline-14 to the structure and actions of melittin. FEBS Lett. 1991, 281: 240-244. 10.1016/0014-5793(91)80402-O.
Article
PubMed
CAS
Google Scholar
Garver P, Muriana M: Purification and Partial Amino Acid Sequence of Curvaticin FS47 a Heat-Stable Bacteriocin produced by Lactobacillus curvatus FS47. Appl Env Microbiol. 1994, 60 (6): 2191-2195.
CAS
Google Scholar
Lee DG, Kim PI, Park YK, Woo ER, Choi JS: Design of novel plants peptide analogs with potent fungicidal activity, based on PMAP-23 antimicrobial peptide isolated from porcine myeloid. Biochem Biophys Res Commun. 2002, 293 (1): 231-238. 10.1016/S0006-291X(02)00222-X.
Article
PubMed
CAS
Google Scholar
Holo H, Nilssen O, Nes IF: Lactococcin A, a new bacteriocin from Lactococcus lactis sub sp. cremoris: isolation and characterization of the protein and its gene. J Bacteriol. 1991, 173: 3879-3887.
PubMed
CAS
PubMed Central
Google Scholar
Muriana PM, Klaenhammer TR: Purification and partial characterization of lactacin F, a bacteriocin produced by Lactobacillus acidophilus 11088. Appl Environ Microbiol. 1991, 57: 114-121.
PubMed
CAS
PubMed Central
Google Scholar
Oppegard C, Fimland G, Thorbek L, Nissen-Meyer J: Analysis of the two-peptide bacteriocins lactococcin G and enterocin 1071 by site-directed mutagenesis. Appl Environ Microbiol. 2007, 73: 2931-2938. 10.1128/AEM.02718-06.
Article
PubMed
PubMed Central
Google Scholar
Shai Y: Mode of action of membrane active antimicrobial peptides. Biopolymers (Peptide Sciences). 2002, 66: 236-248. 10.1002/bip.10260.
Article
CAS
Google Scholar
Gennaro R, Zanetti M, Benincasa M, Podda E, Miani M: Proline-rich antimicrobial peptides from animals: structure, biological functions. Curr Pharmacol Des. 2002, 8 (9): 763-778. 10.2174/1381612023395394.
Article
CAS
Google Scholar
Cintas LM, Casaus P, Holo H, Hernandez PE, Nes IF, Havarstein LS: Enterocins L50A and L50B, two novel bacteriocins from Enterococcus faecium L50, are related to staphylococcal hemolysins. J Bacteriol. 1998, 180: 1988-1994.
PubMed
CAS
PubMed Central
Google Scholar
Wong JH, Hao J, Cao Z, Qiao M, Xu H, Bai Y, Ng TB: An antifungal protein from Bacillus amyloliquefaciens. J Appl Microbiol. 2008, 105: 1888-1898. 10.1111/j.1365-2672.2008.03917.x.
Article
PubMed
CAS
Google Scholar
Nakayama J, Takanami Y, Horii T, Sakuda S, Suzuki A: Molecular Mechanism of Peptide-Specific Pheromone Signaling in Enterococcus faecalis, Functions of Pheromone Receptor TraA and Pheromone-Binding Protein TraC Encoded by Plasmid pPD1. J Bacteriol. 1998, 180: 449-456.
PubMed
CAS
PubMed Central
Google Scholar
Anne-sophie L, Gemert EV, Marie-Pierre C-C: Analysis of the Bacteriolytic Enzymes of the Autolytic Lactococcus lactis sub sp. cremoris Strain AM2 by Renaturing Polyacrylamide Gel Electrophoresis: Identification of a Prophage-Encoded Enzyme. Appl Env Microbiol. 1998, 64: 4142-4148.
Google Scholar
Schagger H, Von Jagow G: Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987, 166: 368-379. 10.1016/0003-2697(87)90587-2.
Article
PubMed
CAS
Google Scholar
Hasan MF, Das R, Khan A, Hasan MS, Rahman M: The determination of antibacterial and antifungal activities of Polygonum hydropiper (L.) Root Extract. Adv Biol Res. 2009, 3: 53-56.
Google Scholar
Yadav V, Mandhan R, Dabur R, Chhillar AK, Gupta J, Sharma GL: An antifungal fraction from Escherichia coli. J Med Microbiol. 2005, 54: 375-379. 10.1099/jmm.0.45748-0.
Article
PubMed
CAS
Google Scholar
Liu Y, Chen Z, Ng TB, Zhang J, Zhou M, Song F, Lu F, Liu Y: Bacisubin, an antifungal protein with ribonuclease and hemagglutinating activities from Bacillus subtilis strain B-916. Peptides. 2007, 28: 553-559. 10.1016/j.peptides.2006.10.009.
Article
PubMed
Google Scholar
Bringans S, Eriksen S, Kendrick T, Gopalakrishnakone P, Livk A, Lock R, Lipscombe R: Proteomic analyses of the venom of Heterometrus longimanus (Asian black scorpion). Proteomics. 2008, 8: 1081-1096. 10.1002/pmic.200700948.
Article
PubMed
CAS
Google Scholar