WHO:http://www.who.int/tb/publications/global_report/2009/pdf/full_report.pdf
Dye C, Garnett GP, Sleeman K, Williams BG: Prospects for worldwide tuberculosis control under the WHO DOTS strategy. Directly observed short-course therapy. Lancet. 1998, 352 (9144): 1886-1891. 10.1016/S0140-6736(98)03199-7.
Article
CAS
PubMed
Google Scholar
Espinal MA, Laszlo A, Simonsen L, Boulahbal F, Kim SJ, Reniero A, Hoffner S, Rieder HL, Binkin N, Dye C: Global trends in resistance to antituberculosis drugs. World Health Organization-International Union against Tuberculosis and Lung Disease Working Group on Anti-Tuberculosis Drug Resistance Surveillance. N Engl J Med. 2001, 344 (17): 1294-1303. 10.1056/NEJM200104263441706.
Article
CAS
PubMed
Google Scholar
Van Rie A, Enarson D: XDR tuberculosis: an indicator of public-health negligence. Lancet. 2006, 368 (9547): 1554-1556. 10.1016/S0140-6736(06)69575-5.
Article
PubMed
Google Scholar
Daffe M, Draper P: The envelope layers of mycobacteria with reference to their pathogenicity. Adv Microb Physiol. 1998, 39: 131-203. 10.1016/S0065-2911(08)60016-8.
Article
CAS
PubMed
Google Scholar
Lee RE, Brennan PJ, Besra GS: Mycobacteriumtuberculosis cell envelope. Curr Top Microbiol Immunol. 1996, 215: 1-27.
CAS
PubMed
Google Scholar
Zhang Y, Telenti A: Genetics of drug resistance in Mycobacterium tuberculosis. Molecular genetics of mycobacteria. Edited by: Hatfull GF, Jacobs WR Jr. 2000, Washington, D.C.: ASM Press, 235-254.
Google Scholar
Jackson M, Crick DC, Brennan PJ: Phosphatidylinositol is an essential phospholipid of mycobacteria. J Biol Chem. 2000, 275 (39): 30092-30099. 10.1074/jbc.M004658200.
Article
CAS
PubMed
Google Scholar
Moreno C, Taverne J, Mehlert A, Bate CA, Brealey RJ, Meager A, Rook GA, Playfair JH: Lipoarabinomannan from Mycobacterium tuberculosis induces the production of tumour necrosis factor from human and murine macrophages. Clin Exp Immunol. 1989, 76 (2): 240-245.
PubMed Central
CAS
PubMed
Google Scholar
Chan ED, Morris KR, Belisle JT, Hill P, Remigio LK, Brennan PJ, Riches DW: Induction of inducible nitric oxide synthase-NO* by lipoarabinomannan of Mycobacterium tuberculosis is mediated by MEK1-ERK, MKK7-JNK, and NF-kappaB signaling pathways. Infect Immun. 2001, 69 (4): 2001-2010. 10.1128/IAI.69.4.2001-2010.2001.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chang JC, Wysocki A, Tchou-Wong KM, Moskowitz N, Zhang Y, Rom WN: Effect of Mycobacterium tuberculosis and its components on macrophages and the release of matrix metalloproteinases. Thorax. 1996, 51 (3): 306-311. 10.1136/thx.51.3.306.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang Y, Nakata K, Weiden M, Rom WN: Mycobacterium tuberculosis enhances human immunodeficiency virus-1 replication by transcriptional activation at the long terminal repeat. J Clin Invest. 1995, 95 (5): 2324-2331. 10.1172/JCI117924.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bernier R, Barbeau B, Olivier M, Tremblay MJ: Mycobacterium tuberculosis mannose-capped lipoarabinomannan can induce NF-kappaB-dependent activation of human immunodeficiency virus type 1 long terminal repeat in T cells. J Gen Virol. 1998, 79 (Pt 6): 1353-1361.
Article
CAS
PubMed
Google Scholar
Da Costa CT, Khanolkar-Young S, Elliott AM, Wasunna KM, McAdam KP: Immunoglobulin G subclass responses to mycobacterial lipoarabinomannan in HIV-infected and non-infected patients with tuberculosis. Clin Exp Immunol. 1993, 91 (1): 25-29.
Article
PubMed Central
CAS
PubMed
Google Scholar
Del Prete R, Picca V, Mosca A, D'Alagni M, Miragliotta G: Detection of anti-lipoarabinomannan antibodies for the diagnosis of active tuberculosis. Int J Tuberc Lung Dis. 1998, 2 (2): 160-163.
CAS
PubMed
Google Scholar
Hoppe HC, de Wet BJ, Cywes C, Daffe M, Ehlers MR: Identification of phosphatidylinositol mannoside as a mycobacterial adhesin mediating both direct and opsonic binding to nonphagocytic mammalian cells. Infect Immun. 1997, 65 (9): 3896-3905.
PubMed Central
CAS
PubMed
Google Scholar
Jones BW, Means TK, Heldwein KA, Keen MA, Hill PJ, Belisle JT, Fenton MJ: Different Toll-like receptor agonists induce distinct macrophage responses. J Leukoc Biol. 2001, 69 (6): 1036-1044.
CAS
PubMed
Google Scholar
Gilleron M, Ronet C, Mempel M, Monsarrat B, Gachelin G, Puzo G: Acylation state of the phosphatidylinositol mannosides from Mycobacterium bovis bacillus Calmette Guerin and ability to induce granuloma and recruit natural killer T cells. J Biol Chem. 2001, 276 (37): 34896-34904. 10.1074/jbc.M103908200.
Article
CAS
PubMed
Google Scholar
Spies HS, Steenkamp DJ: Thiols of intracellularpathogens. Identification of ovothiol A in Leishmaniadonovani and structural analysis of a novel thiol from Mycobacterium bovis. Eur J Biochem. 1994, 224 (1): 203-213. 10.1111/j.1432-1033.1994.tb20013.x.
Article
CAS
PubMed
Google Scholar
Newton GL, Bewley CA, Dwyer TJ, Horn R, Aharonowitz Y, Cohen G, Davies J, Faulkner DJ, Fahey RC: The structure of U17 isolated from Streptomyces clavuligerus and its properties as an antioxidant thiol. Eur J Biochem. 1995, 230 (2): 821-825. 10.1111/j.1432-1033.1995.0821h.x.
Article
CAS
PubMed
Google Scholar
Buchmeier N, Fahey RC: The mshA gene encoding the glycosyltransferase of mycothiol biosynthesis is essential in Mycobacterium tuberculosis Erdman. FEMS Microbiol Lett. 2006, 264 (1): 74-79. 10.1111/j.1574-6968.2006.00441.x.
Article
CAS
PubMed
Google Scholar
Sareen D, Newton GL, Fahey RC, Buchmeier NA: Mycothiol is essential for growth of Mycobacterium tuberculosis Erdman. J Bacteriol. 2003, 185 (22): 6736-6740. 10.1128/JB.185.22.6736-6740.2003.
Article
PubMed Central
CAS
PubMed
Google Scholar
Movahedzadeh F, Smith DA, Norman RA, Dinadayala P, Murray-Rust J, Russell DG, Kendall SL, Rison SC, McAlister MS, Bancroft GJ: The Mycobacterium tuberculosis ino1 gene is essential for growth and virulence. Mol Microbiol. 2004, 51 (4): 1003-1014. 10.1046/j.1365-2958.2003.03900.x.
Article
CAS
PubMed
Google Scholar
Parish T, Liu J, Nikaido H, Stoker NG: A Mycobacterium smegmatis mutant with a defective inositol monophosphate phosphatase gene homolog has altered cell envelope permeability. J Bacteriol. 1997, 179 (24): 7827-7833.
PubMed Central
CAS
PubMed
Google Scholar
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997, 25 (17): 3389-3402. 10.1093/nar/25.17.3389.
Article
PubMed Central
CAS
PubMed
Google Scholar
Parish T, Stoker NG: Use of a flexible cassette method to generate a double unmarked Mycobacterium tuberculosis tlyA plcABC mutant by gene replacement. Microbiology. 2000, 146 (Pt 8): 1969-1975.
Article
CAS
PubMed
Google Scholar
Betts JC, Lukey PT, Robb LC, McAdam RA, Duncan K: Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol. 2002, 43 (3): 717-731. 10.1046/j.1365-2958.2002.02779.x.
Article
CAS
PubMed
Google Scholar
Manganelli R, Dubnau E, Tyagi S, Kramer FR, Smith I: Differential expression of 10 sigma factor genes in Mycobacterium tuberculosis. Mol Microbiol. 1999, 31 (2): 715-724. 10.1046/j.1365-2958.1999.01212.x.
Article
CAS
PubMed
Google Scholar
Dittmer JCF, Lester RL: A simple specific spray for the detection of phospholipids on thin layer chromatography. Journal of Lipid Research. 1964, 5: 126-127.
CAS
PubMed
Google Scholar
Sweeley CC, Bentley R, Makita M, Wells WW: Gas-liquid chromatography of trimethylsilyl derivatives of sugars and related substances. J Am Chem Soc. 1963, 85: 2497-2507. 10.1021/ja00899a032.
Article
CAS
Google Scholar
Anderberg SJ, Newton GL, Fahey RC: Mycothiol biosynthesis and metabolism. Cellular levels of potential intermediates in the biosynthesis and degradation of mycothiol in mycobacterium smegmatis. J Biol Chem. 1998, 273 (46): 30391-30397. 10.1074/jbc.273.46.30391.
Article
CAS
PubMed
Google Scholar
Newton GL, Arnold K, Price MS, Sherrill C, Delcardayre SB, Aharonowitz Y, Cohen G, Davies J, Fahey RC, Davis C: Distribution of thiols in microorganisms: mycothiol is a major thiol in most actinomycetes. J Bacteriol. 1996, 178 (7): 1990-1995.
PubMed Central
CAS
PubMed
Google Scholar
Nigou J, Besra GS: Characterization and regulation of inositol monophosphatase activity in Mycobacterium smegmatis. Biochem J. 2002, 361 (Pt 2): 385-390.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bone R, Frank L, Springer JP, Pollack SJ, Osborne SA, Atack JR, Knowles MR, McAllister G, Ragan CI, Broughton HB: Structural analysis of inositol monophosphatase complexes with substrates. Biochemistry. 1994, 33 (32): 9460-9467. 10.1021/bi00198a011.
Article
CAS
PubMed
Google Scholar
Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE, textitet al: Decipheringthe biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998, 393 (6685): 537-544. 10.1038/31159.
Article
CAS
PubMed
Google Scholar
Yano R, Nagai H, Shiba K, Yura T: A mutation that enhances synthesis of sigma 32 and suppresses temperature-sensitive growth of the rpoH15 mutant of Escherichia coli. J Bacteriol. 1990, 172 (4): 2124-2130.
PubMed Central
CAS
PubMed
Google Scholar
Shiba K, Ito K, Yura T: Suppressors of the secY24 mutation: identification and characterization of additional ssy genes in Escherichia coli. J Bacteriol. 1986, 166 (3): 849-856.
PubMed Central
CAS
PubMed
Google Scholar
Chang SF, Ng D, Baird L, Georgopoulos C: Analysis of an Escherichia coli dnaB temperature-sensitive insertion mutation and its cold-sensitive extragenic suppressor. J Biol Chem. 1991, 266 (6): 3654-3660.
CAS
PubMed
Google Scholar
Inada T, Nakamura Y: Lethal double-stranded RNA processing activity of ribonuclease III in the absence of suhB protein of Escherichia coli. Biochimie. 1995, 77 (4): 294-302. 10.1016/0300-9084(96)88139-9.
Article
CAS
PubMed
Google Scholar
Chen L, Roberts MF: Overexpression, purification, and analysis of complementation behavior of E. coli SuhB protein: comparison with bacterial and archaeal inositol monophosphatases. Biochemistry. 2000, 39 (14): 4145-4153. 10.1021/bi992424f.
Article
CAS
PubMed
Google Scholar
Nigou J, Dover LG, Besra GS: Purification and biochemical characterization of Mycobacterium tuberculosis SuhB, an inositol monophosphatase involved in inositol biosynthesis. Biochemistry. 2002, 41: 4392-4398. 10.1021/bi0160056.
Article
CAS
PubMed
Google Scholar
Neuwald AF, Krishnan BR, Brikun I, Kulakauskas S, Suziedelis K, Tomcsanyi T, Leyh TS, Berg DE: cysQ, a gene neededfor cysteine synthesis in Escherichia coli K-12 only during aerobic growth. J Bacteriol. 1992, 174 (2): 415-425.
PubMed Central
CAS
PubMed
Google Scholar
Hofmann K, Bucher P, Falquet L, Bairoch A: The PROSITE database, its status in 1999. Nucleic Acids Res. 1999, 27 (1): 215-219. 10.1093/nar/27.1.215.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mailaender C, Reiling N, Engelhardt H, Bossmann S, Ehlers S, Niederweis M: The MspA porin promotes growth and increases antibiotic susceptibility of both Mycobacterium bovis BCG and Mycobacterium tuberculosis. Microbiology. 2004, 150 (Pt 4): 853-864. 10.1099/mic.0.26902-0.
Article
CAS
PubMed
Google Scholar
Niederweis M, Ehrt S, Heinz C, Klocker U, Karosi S, Swiderek KM, Riley LW, Benz R: Cloning of the mspA gene encoding a porin from Mycobacterium smegmatis. Mol Microbiol. 1999, 33 (5): 933-945. 10.1046/j.1365-2958.1999.01472.x.
Article
CAS
PubMed
Google Scholar
Pollack SJ, Knowles MR, Atack JR, Broughton HB, Ragan CI, Osborne S, McAllister G: Probing the role of metal ions in the mechanism of inositol monophosphatase by site-directed mutagenesis. Eur J Biochem. 1993, 217 (1): 281-287. 10.1111/j.1432-1033.1993.tb18244.x.
Article
CAS
PubMed
Google Scholar
Sassetti CM, Boyd DH, Rubin EJ: Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol. 2003, 48 (1): 77-84. 10.1046/j.1365-2958.2003.03425.x.
Article
CAS
PubMed
Google Scholar
Gu X, Chen M, Shen H, Jiang X, Huang Y, Wang H: Rv2131c gene product: an unconventional enzyme that is both inositol monophosphatase and fructose-1,6-bisphosphatase. Biochem Biophys Res Commun. 2006, 339 (3): 897-904. 10.1016/j.bbrc.2005.11.088.
Article
CAS
PubMed
Google Scholar
Hatzios SK, Iavarone AT, Bertozzi CR: Rv2131c from Mycobacterium tuberculosis is a CysQ 3'-phosphoadenosine-5'-phosphatase. Biochemistry. 2008, 47 (21): 5823-5831. 10.1021/bi702453s.
Article
PubMed Central
CAS
PubMed
Google Scholar
Muttucumaru DG, Roberts G, Hinds J, Stabler RA, Parish T: Gene expression profile of Mycobacterium tuberculosis in a non-replicating state. Tuberculosis (Edinb). 2004, 84 (3-4): 239-246. 10.1016/j.tube.2003.12.006.
Article
Google Scholar
Tamarit J, Mulliez E, Meier C, Trautwein A, Fontecave M: The anaerobic ribonucleotide reductase from Escherichia coli. The small protein is an activating enzyme containing a [4fe-4s](2+) center. J Biol Chem. 1999, 274 (44): 31291-31296. 10.1074/jbc.274.44.31291.
Article
CAS
PubMed
Google Scholar
Sato T, Imanaka H, Rashid N, Fukui T, Atomi H, Imanaka T: Genetic evidence identifying the true gluconeogenic fructose-1,6-bisphosphatase in Thermococcus kodakaraensis and other hyperthermophiles. J Bacteriol. 2004, 186 (17): 5799-5807. 10.1128/JB.186.17.5799-5807.2004.
Article
PubMed Central
CAS
PubMed
Google Scholar
Movahedzadeh F, Rison SC, Wheeler PR, Kendall SL, Larson TJ, Stoker NG: The Mycobacterium tuberculosis Rv1099c gene encodes a GlpX-like class II fructose 1,6-bisphosphatase. Microbiology. 2004, 150 (Pt 10): 3499-3505. 10.1099/mic.0.27204-0.
Article
CAS
PubMed
Google Scholar
Mahenthiralingam E, Marklund BI, Brooks LA, Smith DA, Bancroft GJ, Stokes RW: Site-directed mutagenesis of the 19-kilodalton lipoprotein antigen reveals No essential role for the protein in the growth and virulence of Mycobacterium intracellulare. Infect Immun. 1998, 66 (8): 3626-3634.
PubMed Central
CAS
PubMed
Google Scholar
Gill R, Mohammed F, Badyal R, Coates L, Erskine P, Thompson D, Cooper J, Gore M, Wood S: High-resolution structure of myo-inositol monophosphatase, the putative target of lithium therapy. Acta Cryst. 2005, D61: 545-555.
CAS
Google Scholar
Comments
View archived comments (1)