Devi KR, Lee LJ, Yan LT, Syafinaz AN, Rosnah I, Chin VK. Occupational exposure and challenges in tackling M. bovis at human–animal interface: a narrative review. Int Arch Occup Environ Health [Internet]. 2021 Aug 1 [cited 2022 Apr 14];94(6):1147–71. Available from: https://link.springer.com/article/10.1007/s00420-021-01677-z
Kwaghe AV, Vakuru CT, Iwar VN, Ndahi MD, Abubakar A-G, Eze E. Bovine tuberculosis: effects and challenges faced by developed and developing countries in the eradication process. CAB Rev Perspect Agric Vet Sci Nutr Nat Resour. 2015;10(036):1–20.
Google Scholar
Michel AL, Huchzermeyer HFAK. The zoonotic importance of Mycobacterium tuberculosis: transmission from human to monkey. J S Afr Vet Assoc. 1998;69(2):64–5.
CAS
Google Scholar
Cosivi O, Grange JM, Daborn CJ, Raviglione MC, Fujikura T, Cousins D, et al. Zoonotic tuberculosis due to Mycobacterium bovis in developing countries. Emerg Infect Dis. 1998;4(1):59–70.
CAS
Google Scholar
World Health Organisation. Tuberculosis [Internet]. [cited 2022 May 5]. Available from: https://www.who.int/news-room/fact-sheets/detail/tuberculosis
World Health Organisation. Global Tuberculosis Report, 2021. Geneva: WHO; 2021.
Google Scholar
Tuberculosis Highlights Nigeria Tuberculosis Fact Sheet Age and Sex Distribution. [cited 2022 Apr 22]; Available from: http://nigeria.usembassy.gov
National Tuberculosis And Leprosy Control Programme. 2019 annual Tb report National Tuberculosis and. ABUJA; 2019.
SIB C, Atsanda NN, Oni SO, EEU A. Bovine tuberculosis in one caftle herd in Ibadan in Nigeria. Vet Med. 2004;49(11):406–12.
Google Scholar
Abubakar AA, Brooks PH, Abdullahi SU, Kudi AC, Okaiyeto O. Epidemiology of bovine and human tuberculosis in the Federal Capital Territory of Nigeria. Abuja Proc Br Soc Anim Sci. 2005;2005:209.
Google Scholar
Van Soolingen D, Hermans PWM, De Haas PEW, Soll DR, Van Embden JDA. Occurrence and stability of insertion sequences in Mycobacterium tuberculosis complex strains: evaluation of an insertion sequence-dependent DNA polymorphism as a tool in the epidemiology of tuberculosis. J Clin Microbiol. 1991;29(11):2578–86.
Google Scholar
Hesseling AC, Schaaf HS, Hanekom WA, Beyers V, Cotton MF, Gie RP, et al. Danish Bacille Calmette-Gue’ rin vaccine – induced disease in human immunodeficiency virus – infected children. HIV/AIDS [Internet]. 2003;37(1):1226–33 https://academic.oup.com/cid/article/37/9/1226/521378.
CAS
Google Scholar
Raviglione MC, Snider DE Jr, Kochi A. Global epidMorbidityemiology of tuberculosis. And mortality of a worldwide epidemic. J Am Med Assoc. 1995;273(3):220–6.
CAS
Google Scholar
Humblet MF, Boschiroli ML, Saegerman C. Classification of worldwide bovine tuberculosis risk factors in cattle: a stratified approach. Vet Res. 2009;40(5) https://pubmed.ncbi.nlm.nih.gov/19497258/.
Grange JM. Mycobacterium bovis infection in human beings. Tuberculosis Tuberculosis. 2001;81(1–2):71–7.
CAS
Google Scholar
Dhama K, Mahendran M, Tiwari R, Singh SD, Kumar D, Singh S, et al. Access to Research Veterinary Medicine International Volume. 2011 [cited 2019 Aug 5];14. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3135220/pdf/VMI2011-712369.pdf
Onder G, Rezza G, Brusaferro S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA. 2020;323:1775–6 https://www.who.int/docs/default-.
Report of the WHO working group on zoonotic tuberculosis (Mycobacterium bovis, Mainz, Germany, 14 June 1994 / with the participation of FAO [Internet]. [cited 2022 Apr 22]. Available from: https://apps.who.int/iris/handle/10665/62534?locale-attribute=ru&mode=simple
Cosivi O, Grange JM, Daborn CJ, Raviglione MC, Fujikura T. Zoonotic tuberculosis due to Mycobacterium bovis in developing countries. Emerging infectious diseases. 1999;4(1):59–70.
Google Scholar
Anaelom NJ, Ikechukwu OJ, Sunday EW, Nnaemeka UC. Zoonotic tuberculosis : A review of epidemiology , clinical presentation , prevention and control. Journal of Public Health and Epidemiology. 2010;2(6):118–24.
Google Scholar
Abubakar UB, Ameh JI, Abdulkadir IA, Salisu I, Okaiyeto SO, Kudi AC. Bovine tuberculosis in Nigeria: a review. Vet Res. 2011;4(1):24–7.
Google Scholar
Warren RM, Gey Van Pittius NC, Barnard M, Hesseling A, Engelke E, De Kock M, et al. Differentiation of Mycobacterium tuberculosis complex by PCR amplification of genomic regions of difference. Int J Tuberc Lung Dis. 2006;10(7):818–22.
CAS
Google Scholar
Kamerbeek J, Schouls L, Kolk A, Van Agterveld M, Van Soolingen D, Kuijper S, et al. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol. 1997;35(4):907–14.
CAS
Google Scholar
van Soolingen D, Qian L, de Haas PEW, Douglas JT, Traore H, Portaels F, et al. Predominance of a single genotype of Mycobacterium tuberculosis in countries of East Asia. J Clin Microbiol. 2000;33(12):3234–8.
Google Scholar
Cadmus S, Adesokan H, Adejuwon TA, Adeyemi MO. Retrospective study on bovine tuberculosis and other diseases of public health importance at Oko-Oba abattoir. Lagos State Trop Vet. 2010;28(1):21–30.
Google Scholar
Cadmus SIB, Gordon SV, Hewinson RG, Smith NH. Exploring the use of molecular epidemiology to track bovinetuberculosis in Nigeria: an overview from 2002 to 2004. Vet Microbiol. 2011;151:133–8.
CAS
Google Scholar
Adesokan HK, Jenkins AO, van Soolingen D, Cadmus SIB. Mycobacterium bovis infection in livestock workers in Ibadan, Nigeria: evidence of occupational exposure. Int J Tuberc Lung Dis. 2012;16(10):1388–92.
CAS
Google Scholar
Lawson L, Zhang J, Gomgnimbou MK, Abdurrahman ST, Le Moullec S, Mohamed F, et al. A molecular epidemiological and genetic diversity study of tuberculosis in Ibadan, Nnewi and Abuja, Nigeria. PLoS One. 2012;7(6):e38409.
CAS
Google Scholar
Adesokan HK, Akinseye VO, Sulaimon MA. Knowledge and practices about zoonotic tuberculosis prevention and associated determinants amongst livestock workers in Nigeria; 2015. PLoS One. 2018;13(6):1–12.
Google Scholar
FAO. The monetary impact of zoonotic diseases on society Nigeria Evidence from four zoonoses [Internet]. 2018. Available from: https://www.fao.org/3/i9001en/I9001EN.pdf
WHO. Global tuberculosis report 2017: leave no one behind - unite to end TB. WHO - Technical Report Series. 2017;727:146 http://www.who.int/tb/publications/global_report/gtbr2017_main_text.pdf?ua=1.
Google Scholar
Ibrahim UI, Mbaya AW, Geidam YA, Geidam AM. Endoparasites and associated worm burden of captive and free-living ostriches (Struthio camelus) in the semi-arid region of north eastern Nigeria. Int J Poult Sci. 2006;5(12):1128–32.
Google Scholar
Federal Ministry of Health. National Tuberculosis and Leprosy Control Programme. (NTBLCP) National Tuberculosis, Leprosy and Buruli Ulcer Management and Control Workers Manual. 5th ed. Abuja: FMoH; 2010. http://ntblcp.org.ng.
Google Scholar
Minnesota Department of Health tuberculosis prevention and control program. Instructions for collecting sputum for TB why is a sputum test necessary? 2021. Available from: www.health.state.mn.us/tb
Thrusfield MV. Veterinary Epidemiology. 2nd ed. 108 Cowley Road, Oxford OX4 1JF: Blackwell Publishing; 1997. p. 182–3.
Google Scholar
Nasaka J. Occurrence of bovine tuberculosis in slaughtered cattle and risk factors to humans along the Lyantonde-Mbarara highway, Uganda. A dissertation submitted to the Directorate of Research and Graduate Training in partial fulfilment of the award of a degree of Master of Science (MSc) in Environment and Natural Resources Management. 2014. p. 1–86.
Adedipe OD. Prevalence of bovine tuberculosis and helminth co-infection among slaughtered cattle at Bobija municipal abattoir: economic and public health implication. Oyo State: University of Ibadan; 2014.
Google Scholar
Zailani SB, Gabdo AH, Yusuph H, Ahidjo A, Mustapha SK, Malam SA. Prevalence of sputum smear positive tuberculosis among patients at University of Maiduguri teaching hospital. Highl Med Res J. 2005;3(2):24–30.
Google Scholar
Babajide TI, Nwadike VU, Ojo DA, Onasanya OA, Ojide KC, Kula IE. Prevalence of tuberculosis among patients attending two secondary hospitals in Abeokuta Ogun state. African J Clin Exp Microbiol. 2014;15(3):144–50.
Google Scholar
BD Diagnostic Systems. BD BBL MycoPrep Mycobacterial Specimen Digestion/Decontamination Kit Brochure. 2001. p. 2 www.bd.com/diagnostics
The world organisation for animal health (OIE). OIE manual of diagnostic tests and vaccines for terrestrial animals. [Internet]. OIE, Paris, France.; 2009. Available from: www.oie.int.
Revised National Tuberculosis Control Programme: DOTS-Plus Guidelines Jan 2010 [Internet]. Central TB Division, Directorate General of Health Services, Ministry of Health & Family Welfare, Nirman Bhavan, New Delhi – 110011; 2010. 1–122 p. Available from: papers2://publication/uuid/6B4ED336-6D98-4ED6-878D-713C5D23BAEB.
Koneman EW. Colour atlas and textbook of diagnostic microbiology. 4th Editio ed. Philadelphia: Lippincott Williams & Wilkins; 1992. p. 1154.
Google Scholar
Deresa B, Conraths FJ, Ameni G. Abattoir-based study on the epidemiology of caprine tuberculosis in Ethiopia using conventional and molecular tools. Acta Vet Scand. 2013;55(15):7.
Google Scholar
Blench R. Traditional Livestock Breeds: Geographical Distribution and Dynamics in Relation to the Ecology of West Africa. Overseas Development Institute, Portland House, Stag Place, London, SW1E 5DP. Working Paper 122. 1999. p. 1–70.
Brudey K, Gordon M, Moström P, Svensson L, Jonsson B, Sola C, et al. Molecular epidemiology of Mycobacterium tuberculosis in western Sweden. J Clin Microbiol. 2004;42(7):3046–51.
Google Scholar
Abubakar U, Samaila D, Salisu I, Abdulkadir I, Kwaga J. Prevalence of bovine tuberculosis in slaughtered cattle based on Post-mortem meat inspection and Zeihl-Neelson stain in Borno state, Nigeria. Int J Livest Res. 2018;8(5):67.
Google Scholar
Ejeh EF, Adeshokan HK, Raji MA, Bello M, Musa JA, Kudi AC, et al. Current status of bovine tuberculosis in Otukpo. Nigeria J Anim Prod Adv. 2014;4(8):501–7.
Google Scholar
Cadmus SIB, Atsanda NN, Oni SO, Akang EEU. Bovine tuberculosis in one cattle herd in lbadan in Nigeria. Vet Med (Praha). 2004;49(11):406–12.
Google Scholar
Kachalla MG, Bello M, Kwaghe AV, Nguku P. The use of lateral flow technique (rapid kit test) in the determination of prevalence of bovine tuberculosis (bTB) in cattle from two abattoirs in Abuja. Nigeria Int J Life Sci. 2016;5(1):20–6.
Google Scholar
Ejeh EF, Raji MA, Bello M, Lawan FA, Francis MI, Kudi AC, et al. Prevalence and direct economic losses from bovine tuberculosis in Makurdi, Nigeria. Vet. Med Int. 2014;2014:1–6.
Google Scholar
Opara MN, Nwaeze CN, Olaifa AK, Maxwell JA, Okoli IC. Prevalence of bovine tuberculosis (BTB) in Imo state. Southeastern Nigeria J Top Med Parasitol. 2012;35:14–21.
Google Scholar
Ejeh EF, Markus IF, Ejeh AS, Musa JA, Lawan FA, Ameh JA, et al. Seasonal prevalence of bovine tuberculosis in cattle slaughtered in Yola abattoirs. Bangladash. J Vet Med. 2013;11(2).
Elias K, Hussein D, Asseged B, Wondwossen T, Gebeyehu M. Status of bovine tuberculosis in Addis Ababa dairy farms. Rev Sci Tech. 2008;27:915–23.
CAS
Google Scholar
Ewnetu L, Melaku A, Birhanu A. Bovine tuberculosis prevalence in slaughtered cattle at Akaki municipal abattoir, based on meat inspection methods. Glob Vet. 2012;9(5):541–5.
Google Scholar
Radostits OM, Gay CC, Kenneth WH, Constable PD. Veterinary Medicine: A textbook of the disease of cattle, horses, sheep, pigs and goats. 10th ed. Amsterdam: Elsevier Health Sciences; 2007.
Google Scholar
Adu-Bobi NAK, Mak Mensah EE, Achel DG, Gyamfi OK, Bedzra KD. Preliminary investigation of bovine tuberculosis in suspected beef from a metropolitan abattoir in Ghana with Ziehl-Neelsen microscopy. Pakistan. J Biol Sci. 2009;12(17):1222–5.
CAS
Google Scholar
Kwaghe AV, Ameh JA, Ambali AG, Gararawa JT, Bukar G, Jauro U. A retrospective studies on bovine and human tuberculosis cases in Maiduguri. Borno state Researcher. 2011;3(4):39–43.
Google Scholar
Dim CC, Dim NR. Trends of tuberculosis prevalence and treatment outcome in an under-resourced setting: the case of Enugu state. South East Nigeria Niger Med J. 2013;54(6):392–7.
Google Scholar
Brisibe F, Jajere SM, Isah RS. Epidemiology of pulmonary tuberculosis in Maiduguri Metropolis, northeastern Nigeria: a hospital-based retrospective study (2003-2012). PAMJ - One Heal. 2020;2(1). https://doi.org/10.11604/pamj-oh.2020.2.1.22570.
Kida IM, Goni BW, Ummate I, Garbati MA, Bakki B, Hammangabdo A, et al. Sputum smear positivity among patients presenting to the dots clinic. Kanem J Med Sci. 2017;11(2):94–8.
Google Scholar
Ejeh EF. Isolation and molecular characterization of Mycobacterium bovis in Makurdi and Otukpo abattoirs, Benue state. Kaduna State: Nigeria. Ahmadu Bello University Zaria; 2014.
Google Scholar
Lawan FA, Ejeh FE, Kwanashie C, Kadima K. Molecular characterization of Mycobacterium bovis isolated from camels slaughtered for human consumption in Northeastern Nigeria and the public health implication. PAMJ-OH 2020; 24 [Internet]. 2020 May 7 [cited 2022 Mar 8];2(4). Available from: https://www.one-health.panafrican-med-journal.com/content/article/2/4/full
Cadmus S, Palmer S, Okker M, Dale J, Gover K, Smith N, et al. Molecular analysis of human and bovine tubercle Bacilli from a local setting in Nigeria. J Clin Microbiol. 2006;44(1):29–34.
CAS
Google Scholar
Njanpop-Lafourcade BM, Inwald J, Ostyn A, Durand B, Hughes S, Thorel M, et al. Molecular typing of Mycobacterium bovis isolates from Cameroon. J Clin Microbiol. 2001;39(1):222–7.
CAS
Google Scholar
Müller B, Steiner B, Bonfoh B, Fané A, Smith NH, Zinsstag J. Molecular characterisation of Mycobacterium bovis isolated from cattle slaughtered at the Bamako abattoir in Mali. BMC Vet Res. 2008;4:2–7.
Google Scholar
Yahyaoui-Azami H, Aboukhassib H, Bouslikhane M, Berrada J, Rami S, Reinhard M, et al. Molecular characterization of bovine tuberculosis strains in two slaughterhouses in Morocco. BMC Vet Res. 2017;13(1):1–8.
Google Scholar
Haddad N, Ostyn A, Karoui C, Masselot M, Thorel MF, Hughes SL, et al. Spoligotype diversity of Mycobacterium bovis strains isolated in France from 1979 to 2000. J Clin Microbiol. 2001;39(10):3623–32.
CAS
Google Scholar
Driscoll JR, McGarry MA, Taber HW. DNA typing of a nonviable culture of Mycobacterium tuberculosis in a homeless shelter outbreak. J Clin Microbiol. 1999;37(1):274–5.
CAS
Google Scholar
Van Embden JDA, Van Gorkom T, Kremer K, Jansen R, Van Der Zeijst BAM, Schouls LM. Genetic variation and evolutionary origin of the direct repeat locus of Mycobacterium tuberculosis complex bacteria. J Bacteriol. 2000;182(9):2393–401.
Google Scholar
Müller B, Hilty M, Berg S, Garcia-Pelayo MC, Dale J, Boschiroli ML, et al. African 1, an epidemiologically important clonal complex of mycobacterium bovis dominant in Mali, Nigeria, Cameroon, and Chad. J Bacteriol. 2009;191(6):1951–60.
Google Scholar
Molina-Moya B, Abdurrahman ST, Madukaji LI, Gomgnimbou MK, Spinasse L, Gomes-Fernandes M, et al. Genetic characterization of Mycobacterium tuberculosis complex isolates circulating in Abuja. Nigeria Infect Drug Resist. 2018;11:1617–25.
CAS
Google Scholar
Thumamoa BP, Asuquoa AE, Abia-Basseya LN, Lawson L, Hillc V, Zozioc T, et al. Molecular epidemiology and genetic diversity of Mycobacterium tuberculosis complex in the Cross River state. Nigeria Infect Genet Evol. 2012;12(4):671–7.
Google Scholar
Molina-moya B, Gomgnimbou MK, Spinasse L, Obasanya J, Oladimeji O, Dacombe R, et al. Mycobacterium tuberculosis complex genotypes circulating in Nigeria based on spoligotyping obtained from Ziehl-Neelsen stained slides extracted DNA. PLoS neglected tropical diseases. 2018;12(2):1–13.
Google Scholar
Niobe-Eyangoh SN, Kuaban C, Sorlin P, Cunin P, Thonnon J, Sola C, et al. Genetic biodiversity of Mycobacterium tuberculosis complex strains from patients with pulmonary tuberculosis in Cameroon. J Clin Microbiol. 2003;41(6):2547–53.
Google Scholar
Godreuil S, Torrea G, Terru D, Chevenet F, Diagbouga S, Supply P, et al. First molecular epidemiology study of Mycobacterium tuberculosis in Burkina Faso. J Clin Microbiol. 2007;45(3):921–7.
CAS
Google Scholar
Homolka S, Post E, Oberhauser B, George AG, Westman L, Dafae F, et al. High genetic diversity among Mycobacterium tuberculosis complex strains from Sierra Leone. BMC Microbiol. 2008;8(1):1–8.
Google Scholar
Ani A, Bruvik T, Okoh Y, Agaba P, Agbaji O, Idoko J, et al. Genetic diversity of Mycobacterium tuberculosis complex in Jos, Nigeria. BMC Infect Dis. 2010;10(1):1–5.
Google Scholar
Uzoewulu GN, Lawson L, Nnanna IS, Rastogi N, Goyal M. Genetic diversity of Mycobacterium tuberculosis complex strains isolated from patients with pulmonary tuberculosis in Anambra state. Nigeria Int J Mycobacteriology. 2016;5(1):74–9.
Google Scholar
Brown T, Nikolayevskyy V, Velji P, Drobniewski F. Associations between Mycobacterium tuberculosis strains and phenotypes. Emerg Infect Dis. 2010;16(2):272–80.
Google Scholar
Adesokan HK, Streicher EM, van Helden PD, Warren RM, Cadmus SIB. Genetic diversity of Mycobacterium tuberculosis complex strains isolated from livestock workers and cattle in Nigeria. PLoS One. 2019;14(2):e0211637.
CAS
Google Scholar
Coll F, McNerney R, Guerra-Assunção JA, Glynn JR, Perdigão J, Viveiros M, et al. A robust SNP barcode for typing Mycobacterium tuberculosis complex strains. Nat Commun. 2014;5:4–8.
Google Scholar
Filliol I, Driscoll JR, Van Soolingen D, Kreiswirth BN, Kremer K, Valétudie G, et al. Snapshot of moving and expanding clones of Mycobacterium tuberculosis and their global distribution assessed by spoligotyping in an international study. J Clin Microbiol. 2003;41(5):1963–70.
Google Scholar
Sola C. Spoligotype database of Mycobacterium tuberculosis: biogeographic distribution of shared types and epidemiologic and phylogenetic perspectives. Emerg Infect Dis. 2001;7(3):390–6.
CAS
Google Scholar
Ritacco V, Di Lonardo M, Reniero A, Ambroggi M, Barrera L, Dambrosi A, et al. Nosocomial spread of human immunodeficiency virus-related multidrug- resistant tuberculosis in Buenos Aires. J Infect Dis. 1997;176(3):637–42.
CAS
Google Scholar
Kubín M, Havelková M, Hynčicová I, Švecová Z, Kaustová J, Kremer K, et al. A multidrug-resistant tuberculosis microepidemic caused by genetically closely related Mycobacterium tuberculosis strains. J Clin Microbiol. 1999;37(8):2715–6.
Google Scholar
Mardassi H, Namouchi A, Haltiti R, Zarrouk M, Mhenni B, Karboul A, et al. Tuberculosis due to resistant Haarlem strain. Tunisia Emerg Infect Dis. 2005;11(6):957–61.
CAS
Google Scholar
Haeili M, Darban-Sarokhalil D, Fooladi AAI, Javadpour S, Hashemi A, Siavoshi F, et al. Spoligotyping and drug resistance patterns of Mycobacterium tuberculosis isolates from five provinces of Iran. Microbiologyopen. 2013;2(6):988–96.
CAS
Google Scholar
Ködmön C, Niemann S, Lukács J, Sör É, Dávid S, Somoskövi Á. Molecular epidemiology of drug-resistant tuberculosis in Hungary. J Clin Microbiol. 2006;44(11):4258–61.
Google Scholar
Farnia P, Masjedi MR, Mirsaeidi M, Mohammadi F, Ghanavi J, Vincent V, et al. Prevalence of Haarlem I and Beijing types of Mycobacterium tuberculosis strains in Iranian and afghan MDR-TB patients. J Inf Secur. 2006;53(5):331–6.
Google Scholar
Igbokwe IO, Madaki YI, Danburan S, Ameh JA, Aliyu MM, Nwosu CO. Prevalence of pulmonary tuberculosis lesions in cattle slaughtered in abattoirs in northeastern Nigeria. Rev d Elev Med Vet des Pays Trop. 2001;54(3–4):191–5.
Google Scholar