Zhang Y, Wang Q, Yin Y, Chen H, Jin L, Gu B, et al. Epidemiology of carbapenem-resistant enterobacteriaceae infections: report from the China CRE network. Antimicrob Agents Chemother. 2018;62(2):e01882–17.
van Duin D, Bonomo RA. Ceftazidime/avibactam and Ceftolozane/Tazobactam: second-generation beta-lactam/beta-lactamase inhibitor combinations. Clin Infect Dis. 2016;63(2):234–41. https://doi.org/10.1093/cid/ciw243.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shields RK, Potoski BA, Haidar G, Hao B, Doi Y, Chen L, et al. Clinical outcomes, drug toxicity, and emergence of ceftazidime-avibactam resistance among patients treated for Carbapenem-resistant Enterobacteriaceae infections. Clin Infect Dis. 2016;63(12):1615–8. https://doi.org/10.1093/cid/ciw636.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shields RK, Chen L, Cheng S, Chavda KD, Press EG, Snyder A, et al. Emergence of ceftazidime-avibactam resistance due to plasmid-borne blaKPC-3 mutations during treatment of carbapenem-resistant Klebsiella pneumoniae infections. Antimicrob Agents Chemother. 2017;61(3):e02097–16.
Shields RK, Nguyen MH, Press EG, Chen L, Kreiswirth BN, Clancy CJ. Emergence of ceftazidime-avibactam resistance and restoration of carbapenem susceptibility in Klebsiella pneumoniae carbapenemase-producing K pneumoniae: a case report and review of literature. Open Forum Infect Dis. 2017;4(3):ofx101.
Article
PubMed
PubMed Central
Google Scholar
Giddins MJ, Macesic N, Annavajhala MK, Stump S, Khan S, McConville TH, et al. Successive emergence of ceftazidime-avibactam resistance through distinct genomic adaptations in blaKPC-2-harboring Klebsiella pneumoniae sequence type 307 isolates. Antimicrob Agents Chemother. 2018;62(3):e02101–17.
Athans V, Neuner EA, Hassouna H, Richter SS, Keller G, Castanheira M, et al. Meropenem-vaborbactam as salvage therapy for ceftazidime-avibactam-resistant Klebsiella pneumoniae bacteremia and abscess in a liver transplant recipient. Antimicrob Agents Chemother. 2019;63(1):e01551–18.
Hemarajata P, Humphries RM. Ceftazidime/avibactam resistance associated with L169P mutation in the omega loop of KPC-2. J Antimicrob Chemother. 2019;74(5):1241–3. https://doi.org/10.1093/jac/dkz026.
Article
CAS
PubMed
Google Scholar
Gaibani P, Campoli C, Lewis RE, Volpe SL, Scaltriti E, Giannella M, et al. In vivo evolution of resistant subpopulations of KPC-producing Klebsiella pneumoniae during ceftazidime/avibactam treatment. J Antimicrob Chemother. 2018;73(6):1525–9. https://doi.org/10.1093/jac/dky082.
Article
CAS
PubMed
Google Scholar
Raisanen K, Koivula I, Ilmavirta H, Puranen S, Kallonen T, Lyytikainen O, et al. Emergence of ceftazidime-avibactam-resistant Klebsiella pneumoniae during treatment, Finland december 2018. Euro Surveill. 2019;24(19):1900256.
Venditti C, Nisii C, D'Arezzo S, Vulcano A, Capone A, Antonini M, et al. Molecular and phenotypical characterization of two cases of antibiotic-driven ceftazidime-avibactam resistance in Bla KPC-3-harboring Klebsiella pneumoniae. Infect Drug Resist. 2019;12:1935–40. https://doi.org/10.2147/IDR.S207993.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gottig S, Frank D, Mungo E, Nolte A, Hogardt M, Besier S, et al. Emergence of ceftazidime/avibactam resistance in KPC-3-producing Klebsiella pneumoniae in vivo. J Antimicrob Chemother. 2019;74(11):3211–6. https://doi.org/10.1093/jac/dkz330.
Article
CAS
PubMed
Google Scholar
Shields RK, Nguyen MH, Chen L, Press EG, Kreiswirth BN, Clancy CJ. Pneumonia and renal replacement therapy are risk factors for ceftazidime-avibactam treatment failures and resistance among patients with carbapenem-resistant enterobacteriaceae infections. Antimicrob Agents Chemother. 2018;62(5):e02497–17.
Mueller L, Masseron A, Prod'Hom G, Galperine T, Greub G, Poirel L, et al. Phenotypic, biochemical and genetic analysis of KPC-41, a KPC-3 variant conferring resistance to ceftazidime-avibactam and exhibiting reduced carbapenemase activity. Antimicrob Agents Chemother. 2019;63(12):e01111–19.
Gaibani P, Ambretti S, Campoli C, Viale P, Re MC. Genomic characterization of a Klebsiella pneumoniae ST1519 resistant to ceftazidime/avibactam carrying a novel KPC variant (KPC-36). Int J Antimicrob Agents. 2020;55(1):105816. https://doi.org/10.1016/j.ijantimicag.2019.09.020.
Article
CAS
PubMed
Google Scholar
Antonelli A, Giani T, Di Pilato V, Riccobono E, Perriello G, Mencacci A, et al. KPC-31 expressed in a ceftazidime/avibactam-resistant Klebsiella pneumoniae is associated with relevant detection issues. J Antimicrob Chemother. 2019;74(8):2464–6. https://doi.org/10.1093/jac/dkz156.
Article
CAS
PubMed
Google Scholar
Both A, Buttner H, Huang J, Perbandt M, Belmar Campos C, Christner M, et al. Emergence of ceftazidime/avibactam non-susceptibility in an MDR Klebsiella pneumoniae isolate. J Antimicrob Chemother. 2017;72(9):2483–8. https://doi.org/10.1093/jac/dkx179.
Article
CAS
PubMed
Google Scholar
Humphries RM, Yang S, Hemarajata P, Ward KW, Hindler JA, Miller SA, et al. First report of ceftazidime-avibactam resistance in a KPC-3-expressing Klebsiella pneumoniae isolate. Antimicrob Agents Chemother. 2015;59(10):6605–7. https://doi.org/10.1128/AAC.01165-15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shen Z, Ding B, Ye M, Wang P, Bi Y, Wu S, et al. High ceftazidime hydrolysis activity and porin OmpK35 deficiency contribute to the decreased susceptibility to ceftazidime/avibactam in KPC-producing Klebsiella pneumoniae. J Antimicrob Chemother. 2017;72(7):1930–6. https://doi.org/10.1093/jac/dkx066.
Article
CAS
PubMed
Google Scholar
Galani I, Antoniadou A, Karaiskos I, Kontopoulou K, Giamarellou H, Souli M. Genomic characterization of a KPC-23-producing Klebsiella pneumoniae ST258 clinical isolate resistant to ceftazidime-avibactam. Clin Microbiol Infect. 2019;25(6):763 e765–8.
Article
Google Scholar
Humphries RM, Hemarajata P. Resistance to ceftazidime-avibactam in Klebsiella pneumoniae due to porin mutations and the increased expression of KPC-3. Antimicrob Agents Chemother. 2017;61(6):e00537–17.
Nelson K, Hemarajata P, Sun D, Rubio-Aparicio D, Tsivkovski R, Yang S, et al. Resistance to ceftazidime-avibactam is due to transposition of KPC in a porin-deficient strain of Klebsiella pneumoniae with increased efflux activity. Antimicrob Agents Chemother. 2017;61(10):e00989–17.
Zhang P, Shi Q, Hu H, Hong B, Wu X, Du X, et al. Emergence of ceftazidime/avibactam resistance in carbapenem-resistant Klebsiella pneumoniae in China. Clin Microbiol Infect. 2020;26(1):124 e121–4.
Article
Google Scholar
Chen W, Sun L, Guo L, Cao B, Liu Y, Zhao L, et al. Clinical outcomes of ceftazidime-avibactam in lung transplant recipients with infections caused by extensively drug-resistant gram-negative bacilli. Ann Transl Med. 2020;8(3):39. https://doi.org/10.21037/atm.2019.10.40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun L, Chen W, Li H, Li L, Zou X, Zhao J, et al. Phenotypic and genotypic analysis of KPC-51 and KPC-52, two novel KPC-2 variants conferring resistance to ceftazidime/avibactam in the KPC-producing Klebsiella pneumoniae ST11 clone background. J Antimicrob Chemother. 2020;75(10):3072–4. https://doi.org/10.1093/jac/dkaa241.
Article
CAS
PubMed
Google Scholar
Coppi M, Di Pilato V, Monaco F, Giani T, Conaldi PG, Rossolini GM. Ceftazidime-avibactam resistance associated with increased bla KPC-3 gene copy number mediated by pKpQIL Plasmid derivatives in sequence type 258 Klebsiella pneumoniae. Antimicrob Agents Chemother. 2020;64(4):e01816–19.
Galani I, Karaiskos I, Angelidis E, Papoutsaki V, Galani L, Souli M, et al. Emergence of ceftazidime-avibactam resistance through distinct genomic adaptations in KPC-2-producing Klebsiella pneumoniae of sequence type 39 during treatment. Eur J Clin Microbiol Infect Dis. 2021;40(1):219–24. https://doi.org/10.1007/s10096-020-04000-9.
Article
CAS
PubMed
Google Scholar
Cano A, Guzman-Puche J, Garcia-Gutierrez M, Caston JJ, Gracia-Ahufinger I, Perez-Nadales E, et al. Use of carbapenems in the combined treatment of emerging ceftazidime/avibactam-resistant and carbapenem-susceptible KPC-producing Klebsiella pneumoniae infections: report of a case and review of the literature. J Glob Antimicrob Resist. 2020;22:9–12. https://doi.org/10.1016/j.jgar.2019.11.007.
Article
PubMed
Google Scholar
Pulzova L, Navratilova L, Comor L. Alterations in outer membrane permeability favor drug-resistant phenotype of Klebsiella pneumoniae. Microb Drug Resist. 2017;23(4):413–20. https://doi.org/10.1089/mdr.2016.0017.
Article
CAS
PubMed
Google Scholar
Wong JLC, Romano M, Kerry LE, Kwong HS, Low WW, Brett SJ, et al. OmpK36-mediated Carbapenem resistance attenuates ST258 Klebsiella pneumoniae in vivo. Nat Commun. 2019;10(1):3957. https://doi.org/10.1038/s41467-019-11756-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Castanheira M, Mendes RE, Sader HS. Low frequency of ceftazidime-avibactam resistance among enterobacteriaceae isolates carrying blaKPC Collected in U.S. hospitals from 2012 to 2015. Antimicrob Agents Chemother. 2017;61(3):e02369–16.
Shields RK, Clancy CJ, Hao B, Chen L, Press EG, Iovine NM, et al. Effects of Klebsiella pneumoniae carbapenemase subtypes, extended-spectrum beta-lactamases, and porin mutations on the in vitro activity of ceftazidime-avibactam against carbapenem-resistant K. pneumoniae. Antimicrob Agents Chemother. 2015;59(9):5793–7. https://doi.org/10.1128/AAC.00548-15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cui X, Shan B, Zhang X, Qu F, Jia W, Huang B, et al. Reduced ceftazidime-avibactam susceptibility in KPC-producing Klebsiella pneumoniae from patients without ceftazidime-avibactam use history - a multicenter study in China. Front Microbiol. 2020;11:1365. https://doi.org/10.3389/fmicb.2020.01365.
Article
PubMed
PubMed Central
Google Scholar
Di Pilato V, Aiezza N, Viaggi V, Antonelli A, Principe L, Giani T, et al. KPC-53, a KPC-3 variant of clinical origin associated with reduced susceptibility to ceftazidime-avibactam. Antimicrob Agents Chemother. 2020:65(1):e01429–20.
Li B, Yi Y, Wang Q, Woo PC, Tan L, Jing H, et al. Analysis of drug resistance determinants in Klebsiella pneumoniae isolates from a tertiary-care hospital in Beijing, China. PLoS One. 2012;7(7):e42280. https://doi.org/10.1371/journal.pone.0042280.
Article
CAS
PubMed
PubMed Central
Google Scholar
Doumith M, Ellington MJ, Livermore DM, Woodford N. Molecular mechanisms disrupting porin expression in ertapenem-resistant Klebsiella and Enterobacter spp. clinical isolates from the UK. J Antimicrob Chemother. 2009;63(4):659–67. https://doi.org/10.1093/jac/dkp029.
Article
CAS
PubMed
Google Scholar
Ruzin A, Visalli MA, Keeney D, Bradford PA. Influence of transcriptional activator RamA on expression of multidrug efflux pump AcrAB and tigecycline susceptibility in Klebsiella pneumoniae. Antimicrob Agents Chemother. 2005;49(3):1017–22. https://doi.org/10.1128/AAC.49.3.1017-1022.2005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kitchel B, Rasheed JK, Endimiani A, Hujer AM, Anderson KF, Bonomo RA, et al. Genetic factors associated with elevated carbapenem resistance in KPC-producing Klebsiella pneumoniae. Antimicrob Agents Chemother. 2010;54(10):4201–7. https://doi.org/10.1128/AAC.00008-10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Wang S, Chen W, Song L, Zhang Y, Shen Z, et al. CRISPR-Cas9 and CRISPR-assisted cytidine deaminase enable precise and efficient genome editing in Klebsiella pneumoniae. Appl Environ Microbiol. 2018;84(23):e01834–18.
Carlone GM, Thomas ML, Rumschlag HS, Sottnek FO. Rapid microprocedure for isolating detergent-insoluble outer membrane proteins from Haemophilus species. J Clin Microbiol. 1986;24(3):330–2. https://doi.org/10.1128/jcm.24.3.330-332.1986.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li XZ, Plesiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in gram-negative bacteria. Clin Microbiol Rev. 2015;28(2):337–418. https://doi.org/10.1128/CMR.00117-14.
Article
PubMed
PubMed Central
Google Scholar
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32(1):268–74. https://doi.org/10.1093/molbev/msu300.
Article
CAS
PubMed
Google Scholar
Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol. 2018;35(2):518–22. https://doi.org/10.1093/molbev/msx281.
Article
CAS
PubMed
Google Scholar