Moore T, Arefadib N, Deery A, West S. The first thousand days: an evidence paper; 2017.
Google Scholar
Wopereis H, Oozeer R, Knipping K, Belzer C, Knol J. The first thousand days - intestinal microbiology of early life: establishing a symbiosis. Pediatr Allergy Immunol. 2014;25(5):428–38. Epub 2014/06/06. https://doi.org/10.1111/pai.12232.
Article
PubMed
Google Scholar
Arrieta MC, Arevalo A, Stiemsma L, Dimitriu P, Chico ME, Loor S, et al. Associations between infant fungal and bacterial dysbiosis and childhood atopic wheeze in a nonindustrialized setting. J Allergy Clin Immunol. 2017; Epub 2017/12/16.
Stokholm J, Blaser MJ, Thorsen J, Rasmussen MA, Waage J, Vinding RK, et al. Maturation of the gut microbiome and risk of asthma in childhood. Nat Commun. 2018;9(1):141. Epub 2018/01/13. https://doi.org/10.1038/s41467-017-02573-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fujimura KE, Sitarik AR, Havstad S, Lin DL, Levan S, Fadrosh D, et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med. 2016;22(10):1187–91. Epub 2016/09/13. https://doi.org/10.1038/nm.4176.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arrieta MC, Stiemsma LT, Dimitriu PA, Thorson L, Russell S, Yurist-Doutsch S, et al. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med. 2015;7(307):307ra152 Epub 2015/10/02.
Article
PubMed
Google Scholar
Stewart CJ, Ajami NJ, O'Brien JL, Hutchinson DS, Smith DP, Wong MC, et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature. 2018;562(7728):583–8. Epub 2018/10/26. https://doi.org/10.1038/s41586-018-0617-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vatanen T, Franzosa EA, Schwager R, Tripathi S, Arthur TD, Vehik K, et al. The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature. 2018;562(7728):589–94. Epub 2018/10/26. https://doi.org/10.1038/s41586-018-0620-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zimmermann P, Messina N, Mohn WW, Finlay BB, Curtis N. Association between the intestinal microbiota and allergic sensitization, eczema, and asthma: a systematic review. J Allergy Clin Immunol. 2019;143(2):467–85. Epub 2019/01/03. https://doi.org/10.1016/j.jaci.2018.09.025.
Article
PubMed
Google Scholar
Feehley T, Plunkett CH, Bao R, Choi Hong SM, Culleen E, Belda-Ferre P, et al. Healthy infants harbor intestinal bacteria that protect against food allergy. Nat Med. 2019; Epub 2019/01/16.
Wegienka G, Havstad S, Zoratti EM, Kim H, Ownby DR, Johnson CC. Combined effects of prenatal medication use and delivery type are associated with eczema at age 2 years. Clin Exp Allergy. 2015;45(3):660–8. Epub 2014/12/04. https://doi.org/10.1111/cea.12467.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tun HM, Bridgman SL, Chari R, Field CJ, Guttman DS, Becker AB, et al. Roles of birth mode and infant gut microbiota in intergenerational transmission of overweight and obesity from mother to offspring. JAMA Pediatr. 2018; Epub 2018/02/21.
Metsala J, Lundqvist A, Virta LJ, Kaila M, Gissler M, Virtanen SM. Prenatal and post-natal exposure to antibiotics and risk of asthma in childhood. Clin Exp Allergy. 2015;45(1):137–45. Epub 2014/06/20. https://doi.org/10.1111/cea.12356.
Article
CAS
PubMed
Google Scholar
Mueller NT, Whyatt R, Hoepner L, Oberfield S, Dominguez-Bello MG, Widen EM, et al. Prenatal exposure to antibiotics, cesarean section and risk of childhood obesity. Int J Obes. 2015;39(4):665–70. Epub 2014/10/10. https://doi.org/10.1038/ijo.2014.180.
Article
CAS
Google Scholar
Cho I, Yamanishi S, Cox L, Methe BA, Zavadil J, Li K, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature. 2012;488(7413):621–6. Epub 2012/08/24. https://doi.org/10.1038/nature11400.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hong P-Y, Lee BW, Aw M, Shek LPC, Yap GC, Chua KY, et al. Comparative analysis of fecal microbiota in infants with and without eczema. PLoS One. 2010;5(4):e9964. https://doi.org/10.1371/journal.pone.0009964.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chavarro JE, Martín-Calvo N, Yuan C, Arvizu M, Rich-Edwards JW, Michels KB, et al. Association of birth by cesarean delivery with obesity and type 2 diabetes among adult women. JAMA Netw Open. 2020;3(4):e202605.
Article
PubMed
PubMed Central
Google Scholar
Chua MC, Ben-Amor K, Lay C, Neo AGE, Chiang WC, Rao R, et al. Effect of synbiotic on the gut microbiota of cesarean delivered infants: a randomized, double-blind, multicenter study. J Pediatr Gastroenterol Nutr. 2017;65(1):102–6. Epub 2017/06/24. https://doi.org/10.1097/MPG.0000000000001623.
Article
PubMed
Google Scholar
Miller JE, Goldacre R, Moore HC, Zeltzer J, Knight M, Morris C, et al. Mode of birth and risk of infection-related hospitalisation in childhood: a population cohort study of 7.17 million births from 4 high-income countries. PLoS Med. 2020;17(11):e1003429.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jakobsson HE, Abrahamsson TR, Jenmalm MC, Harris K, Quince C, Jernberg C, et al. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section. Gut. 2014;63(4):559–66. Epub 2013/08/09. https://doi.org/10.1136/gutjnl-2012-303249.
Article
CAS
PubMed
Google Scholar
Backhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe. 2015;17(5):690–703. Epub 2015/05/15. https://doi.org/10.1016/j.chom.2015.04.004.
Article
CAS
PubMed
Google Scholar
Stokholm J, Thorsen J, Chawes BL, Schjorring S, Krogfelt KA, Bonnelykke K, et al. Cesarean section changes neonatal gut colonization. J Allergy Clin Immunol. 2016;138(3):881–9 e2. Epub 2016/04/06. https://doi.org/10.1016/j.jaci.2016.01.028.
Article
PubMed
Google Scholar
Hill CJ, Lynch DB, Murphy K, Ulaszewska M, Jeffery IB, O'Shea CA, et al. Evolution of gut microbiota composition from birth to 24 weeks in the INFANTMET cohort. Microbiome. 2017;5(1):4. Epub 2017/01/18. https://doi.org/10.1186/s40168-016-0213-y.
Article
PubMed
PubMed Central
Google Scholar
Korpela K, Costea PI, Coelho LP, Kandels-Lewis S, Willemsen G, Boomsma DI, et al. Selective maternal seeding and environment shape the human gut microbiome. Genome Res. 2018; Epub 2018/03/03.
Makino H, Kushiro A, Ishikawa E, Kubota H, Gawad A, Sakai T, et al. Mother-to-infant transmission of intestinal bifidobacterial strains has an impact on the early development of vaginally delivered infant's microbiota. PLoS One. 2013;8(11):e78331. Epub 2013/11/19. https://doi.org/10.1371/journal.pone.0078331.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wampach L, Heintz-Buschart A, Fritz JV, Ramiro-Garcia J, Habier J, Herold M, et al. Birth mode is associated with earliest strain-conferred gut microbiome functions and immunostimulatory potential. Nat Commun. 2018;9(1):5091. Epub 2018/12/07. https://doi.org/10.1038/s41467-018-07631-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shao Y, Forster SC, Tsaliki E, Vervier K, Strang A, Simpson N, et al. Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature. 2019;574(7776):117–21. Epub 2019/09/20. https://doi.org/10.1038/s41586-019-1560-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rautava S, Luoto R, Salminen S, Isolauri E. Microbial contact during pregnancy, intestinal colonization and human disease. Nat Rev Gastroenterol Hepatol. 2012;9(10):565–76. Epub 2012/08/15. https://doi.org/10.1038/nrgastro.2012.144.
Article
CAS
PubMed
Google Scholar
Troy EB, Kasper DL. Beneficial effects of Bacteroides fragilis polysaccharides on the immune system. Front Biosci (Landmark Ed). 2010;15:25–34 Epub 2009/12/29.
Article
CAS
Google Scholar
Lundell AC, Bjornsson V, Ljung A, Ceder M, Johansen S, Lindhagen G, et al. Infant B cell memory differentiation and early gut bacterial colonization. J Immunol. 2012;188(9):4315–22. Epub 2012/04/12. https://doi.org/10.4049/jimmunol.1103223.
Article
CAS
PubMed
Google Scholar
Dogra S, Sakwinska O, Soh SE, Ngom-Bru C, Bruck WM, Berger B, et al. Dynamics of infant gut microbiota are influenced by delivery mode and gestational duration and are associated with subsequent adiposity. mBio. 2015;6(1) Epub 2015/02/05.
Dominguez-Bello MG, De Jesus-Laboy KM, Shen N, Cox LM, Amir A, Gonzalez A, et al. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat Med. 2016;22(3):250–3. Epub 2016/02/02. https://doi.org/10.1038/nm.4039.
Article
CAS
PubMed
PubMed Central
Google Scholar
Committee Opinion No. 725: Vaginal Seeding. Obstet Gynecol. 2017;130(5):e274–e8 Epub 2017/10/25.
Google Scholar
WB W. Bergey's manual of systematics of archaea and bacteria 2015.
Google Scholar
Tanaka S, Kobayashi T, Songjinda P, Tateyama A, Tsubouchi M, Kiyohara C, et al. Influence of antibiotic exposure in the early postnatal period on the development of intestinal microbiota. FEMS Immunol Med Microbiol. 2009;56(1):80–7. Epub 2009/04/24. https://doi.org/10.1111/j.1574-695X.2009.00553.x.
Article
CAS
PubMed
Google Scholar
Nogacka A, Salazar N, Suarez M, Milani C, Arboleya S, Solis G, et al. Impact of intrapartum antimicrobial prophylaxis upon the intestinal microbiota and the prevalence of antibiotic resistance genes in vaginally delivered full-term neonates. Microbiome. 2017;5(1):93. Epub 2017/08/10. https://doi.org/10.1186/s40168-017-0313-3.
Article
PubMed
PubMed Central
Google Scholar
Chu DM, Ma J, Prince AL, Antony KM, Seferovic MD, Aagaard KM. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat Med. 2017;23(3):314–26. Epub 2017/01/24. https://doi.org/10.1038/nm.4272.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zimmermann P, Curtis N. Effect of intrapartum antibiotics on the intestinal microbiota of infants: a systematic review. Arch Dis Child Fetal Neonatal Ed. 2019; Epub 2019/07/13.
Tapiainen T, Koivusaari P, Brinkac L, Lorenzi HA, Salo J, Renko M, et al. Impact of intrapartum and postnatal antibiotics on the gut microbiome and emergence of antimicrobial resistance in infants. Sci Rep. 2019;9(1):10635. Epub 2019/07/25. https://doi.org/10.1038/s41598-019-46964-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kamal SS, Hyldig N, Krych L, Greisen G, Krogfelt KA, Zachariassen G, et al. Impact of early exposure to cefuroxime on the composition of the gut microbiota in infants following cesarean delivery. J Pediatr. 2019;210:99–105 e2. Epub 2019/05/06. https://doi.org/10.1016/j.jpeds.2019.03.001.
Article
CAS
PubMed
Google Scholar
Martin R, Makino H, Cetinyurek Yavuz A, Ben-Amor K, Roelofs M, Ishikawa E, et al. Early-life events, including mode of delivery and type of feeding, siblings and gender, shape the developing gut microbiota. PLoS One. 2016;11(6):e0158498. Epub 2016/07/01. https://doi.org/10.1371/journal.pone.0158498.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matsuki T, Yahagi K, Mori H, Matsumoto H, Hara T, Tajima S, et al. A key genetic factor for fucosyllactose utilization affects infant gut microbiota development. Nat Commun. 2016;7(1):11939. Epub 2016/06/25. https://doi.org/10.1038/ncomms11939.
Article
CAS
PubMed
PubMed Central
Google Scholar
Freitas AC, Hill JE. Bifidobacteria isolated from vaginal and gut microbiomes are indistinguishable by comparative genomics. PLoS One. 2018;13(4):e0196290. Epub 2018/04/24. https://doi.org/10.1371/journal.pone.0196290.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mikami K, Takahashi H, Kimura M, Isozaki M, Izuchi K, Shibata R, et al. Influence of maternal bifidobacteria on the establishment of bifidobacteria colonizing the gut in infants. Pediatr Res. 2009;65(6):669–74. Epub 2009/05/12. https://doi.org/10.1203/PDR.0b013e31819ed7a8.
Article
PubMed
Google Scholar
Makino H, Kushiro A, Ishikawa E, Muylaert D, Kubota H, Sakai T, et al. Transmission of intestinal Bifidobacterium longum subsp. longum strains from mother to infant, determined by multilocus sequencing typing and amplified fragment length polymorphism. Appl Environ Microbiol. 2011;77(19):6788–93. Epub 2011/08/09. https://doi.org/10.1128/AEM.05346-11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peirotén A, Arqués JL, Medina M, Rodríguez-Mínguez E. Bifidobacterial strains shared by mother and child as source of probiotics. Benefic Microbes. 2018;9(2):231–8. https://doi.org/10.3920/BM2017.0133.
Article
Google Scholar
Alcon-Giner C, Dalby MJ, Caim S, Ketskemety J, Shaw A, Sim K, et al. Microbiota supplementation with Bifidobacterium and Lactobacillus modifies the preterm infant gut microbiota and metabolome: an observational study. Cell Rep Med. 2020;1(5):100077. https://doi.org/10.1016/j.xcrm.2020.100077.
Article
PubMed
PubMed Central
Google Scholar
Bokulich NA, Chung J, Battaglia T, Henderson N, Jay M, Li H, et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med. 2016;8(343):343ra82 Epub 2016/06/17.
Article
PubMed
PubMed Central
Google Scholar
Shin H, Pei Z, Martinez KA 2nd, Rivera-Vinas JI, Mendez K, Cavallin H, et al. The first microbial environment of infants born by C-section: the operating room microbes. Microbiome. 2015;3(59):015–0126.
Google Scholar
Million M, Tidjani Alou M, Khelaifia S, Bachar D, Lagier JC, Dione N, et al. Increased gut redox and depletion of anaerobic and methanogenic prokaryotes in severe acute malnutrition. Sci Rep. 2016;6(1):26051. Epub 2016/05/18. https://doi.org/10.1038/srep26051.
Article
CAS
PubMed
PubMed Central
Google Scholar
Subramanian S, Huq S, Yatsunenko T, Haque R, Mahfuz M, Alam MA, et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature. 2014;510(7505):417–21. Epub 2014/06/05. https://doi.org/10.1038/nature13421.
Article
CAS
PubMed
PubMed Central
Google Scholar
The HC, Florez de Sessions P, Jie S, Pham Thanh D, Thompson CN, Nguyen Ngoc Minh C, et al. Assessing gut microbiota perturbations during the early phase of infectious diarrhea in Vietnamese children. Gut Microbes. 2017:1–17 Epub 2017/08/03.
Zwittink RD, Renes IB, van Lingen RA, van Zoeren-Grobben D, Konstanti P, Norbruis OF, et al. Association between duration of intravenous antibiotic administration and early-life microbiota development in late-preterm infants. Eur J Clin Microbiol Infect Dis. 2018;37(3):475–83. Epub 2018/01/26. https://doi.org/10.1007/s10096-018-3193-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rigottier-Gois L. Dysbiosis in inflammatory bowel diseases: the oxygen hypothesis. ISME J. 2013;7(7):1256–61. Epub 2013/05/17. https://doi.org/10.1038/ismej.2013.80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zeng MY, Inohara N, Nunez G. Mechanisms of inflammation-driven bacterial dysbiosis in the gut. Mucosal Immunol. 2017;10(1):18–26. Epub 2016/08/25. https://doi.org/10.1038/mi.2016.75.
Article
CAS
PubMed
Google Scholar
Litvak Y, Mon KKZ, Nguyen H, Chanthavixay G, Liou M, Velazquez EM, et al. Commensal enterobacteriaceae protect against salmonella colonization through oxygen competition. Cell Host Microbe. 2019;25(1):128–39 e5. Epub 2019/01/11. https://doi.org/10.1016/j.chom.2018.12.003.
Article
CAS
PubMed
Google Scholar
Rivera-Chavez F, Zhang LF, Faber F, Lopez CA, Byndloss MX, Olsan EE, et al. Depletion of butyrate-producing clostridia from the gut microbiota drives an aerobic luminal expansion of Salmonella. Cell Host Microbe. 2016;19(4):443–54. Epub 2016/04/15. https://doi.org/10.1016/j.chom.2016.03.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Byndloss MX, Olsan EE, Rivera-Chavez F, Tiffany CR, Cevallos SA, Lokken KL, et al. Microbiota-activated PPAR-gamma signaling inhibits dysbiotic Enterobacteriaceae expansion. Science. 2017;357(6351):570–5. Epub 2017/08/12. https://doi.org/10.1126/science.aam9949.
Article
CAS
PubMed
PubMed Central
Google Scholar
Byndloss MX. Microbial management. Science. 2020;369(6500):153.
Article
CAS
PubMed
Google Scholar
Feehley T, Belda-Ferre P, Nagler CR. What's LPS got to do with it? A role for gut LPS variants in driving autoimmune and allergic disease. Cell Host Microbe. 2016;19(5):572–4. Epub 2016/05/14. https://doi.org/10.1016/j.chom.2016.04.025.
Article
CAS
PubMed
Google Scholar
Fukuda S, Toh H, Taylor TD, Ohno H, Hattori M. Acetate-producing bifidobacteria protect the host from enteropathogenic infection via carbohydrate transporters. Gut Microbes. 2012;3(5):449–54. Epub 2012/07/25. https://doi.org/10.4161/gmic.21214.
Article
PubMed
Google Scholar
Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K, et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature. 2011;469(7331):543–7. Epub 2011/01/29. https://doi.org/10.1038/nature09646.
Article
CAS
PubMed
Google Scholar
Friedman ES, Bittinger K, Esipova TV, Hou L, Chau L, Jiang J, et al. Microbes vs. chemistry in the origin of the anaerobic gut lumen. Proc Natl Acad Sci U S A. 2018;115(16):4170–5. Epub 2018/04/04. https://doi.org/10.1073/pnas.1718635115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Friel JK, Friesen RW, Harding SV, Roberts LJ. Evidence of oxidative stress in full-term healthy infants. Pediatr Res. 2004;56(6):878–82. Epub 2004/10/08. https://doi.org/10.1203/01.PDR.0000146032.98120.43.
Article
CAS
PubMed
Google Scholar
Nejad RK, Goodarzi MT, Shfiee G, Pezeshki N, Sohrabi M. Comparison of oxidative stress markers and serum cortisol between normal labor and selective cesarean section born neonates. J Clin Diagn Res. 2016;10(6):BC01–3. Epub 2016/08/10. https://doi.org/10.7860/JCDR/2016/16935.7974.
Article
CAS
PubMed
PubMed Central
Google Scholar
Low JSY, Soh SE, Lee YK, Kwek KYC, Holbrook JD, Van der Beek EM, et al. Ratio of Klebsiella/Bifidobacterium in early life correlates with later development of paediatric allergy. Benefic Microbes. 2017;8(5):681–95. Epub 2017/10/13. https://doi.org/10.3920/BM2017.0020.
Article
CAS
Google Scholar
Huurre A, Kalliomäki M, Rautava S, Rinne M, Salminen S, Isolauri E. Mode of delivery – effects on gut microbiota and humoral immunity. Neonatology. 2008;93(4):236–40. https://doi.org/10.1159/000111102.
Article
PubMed
Google Scholar
Huda MN, Lewis Z, Kalanetra KM, Rashid M, Ahmad SM, Raqib R, et al. Stool microbiota and vaccine responses of infants. Pediatrics. 2014;134(2):e362–72. Epub 2014/07/09. https://doi.org/10.1542/peds.2013-3937.
Article
PubMed
PubMed Central
Google Scholar
Stokholm J, Thorsen J, Blaser MJ, Rasmussen MA, Hjelmso M, Shah S, et al. Delivery mode and gut microbial changes correlate with an increased risk of childhood asthma. Sci Transl Med. 2020;12(569) Epub 2020/11/13.
Vatanen T, Kostic AD, d'Hennezel E, Siljander H, Franzosa EA, Yassour M, et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell. 2016;165(4):842–53. Epub 2016/05/03. https://doi.org/10.1016/j.cell.2016.04.007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ta LDH, Chan JCY, Yap GC, Purbojati RW, Drautz-Moses DI, Koh YM, et al. A compromised developmental trajectory of the infant gut microbiome and metabolome in atopic eczema. Gut Microbes. 2020;12(1):1–22. Epub 2020/10/08. https://doi.org/10.1080/19490976.2020.1801964.
Article
CAS
PubMed
Google Scholar
Tun HM, Peng Y, Chen B, Konya TB, Morales-Lizcano NP, Chari R, et al. Ethnicity associations with food sensitization are mediated by gut microbiota development in the first year of life. Gastroenterology. 2021;16(21):00523–0.
Google Scholar
Ong SH, Kukkillaya VU, Wilm A, Lay C, Ho EX, Low L, et al. Species identification and profiling of complex microbial communities using shotgun Illumina sequencing of 16S rRNA amplicon sequences. PLoS One. 2013;8(4):e60811. Epub 2013/04/13. https://doi.org/10.1371/journal.pone.0060811.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chng KR, Tay AS, Li C, Ng AH, Wang J, Suri BK, et al. Whole metagenome profiling reveals skin microbiome-dependent susceptibility to atopic dermatitis flare. Nat Microbiol. 2016;1(9):16106. Epub 2016/08/27. https://doi.org/10.1038/nmicrobiol.2016.106.
Article
CAS
PubMed
Google Scholar
Ho EXP, Cheung CMG, Sim S, Chu CW, Wilm A, Lin CB, et al. Human pharyngeal microbiota in age-related macular degeneration. PLoS One. 2018;13(8):e0201768. Epub 2018/08/09. https://doi.org/10.1371/journal.pone.0201768.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ta LDH, Yap GC, Tay CJX, Lim ASM, Huang CH, Chu CW, et al. Establishment of the nasal microbiota in the first 18 months of life: correlation with early-onset rhinitis and wheezing. J Allergy Clin Immunol. 2018;142(1):86–95. Epub 2018/02/17. https://doi.org/10.1016/j.jaci.2018.01.032.
Article
PubMed
Google Scholar
Miller CS, Baker BJ, Thomas BC, Singer SW, Banfield JF. EMIRGE: reconstruction of full-length ribosomal genes from microbial community short read sequencing data. Genome Biol. 2011;12(5):R44. Epub 2011/05/21. https://doi.org/10.1186/gb-2011-12-5-r44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miller CS, Handley KM, Wrighton KC, Frischkorn KR, Thomas BC, Banfield JF. Short-read assembly of full-length 16S amplicons reveals bacterial diversity in subsurface sediments. PLoS One. 2013;8(2):e56018. Epub 2013/02/14. https://doi.org/10.1371/journal.pone.0056018.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sovic I, Sikic M, Wilm A, Fenlon SN, Chen S, Nagarajan N. Fast and sensitive mapping of nanopore sequencing reads with GraphMap. Nat Commun. 2016;7(1):11307. Epub 2016/04/16. https://doi.org/10.1038/ncomms11307.
Article
CAS
PubMed
PubMed Central
Google Scholar
McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2012;6(3):610–8. Epub 2011/12/03. https://doi.org/10.1038/ismej.2011.139.
Article
CAS
PubMed
Google Scholar
Yarza P, Yilmaz P, Pruesse E, Glockner FO, Ludwig W, Schleifer KH, et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol. 2014;12(9):635–45. Epub 2014/08/15. https://doi.org/10.1038/nrmicro3330.
Article
CAS
PubMed
Google Scholar
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17(1):3 Epub 2011-08-02.
Article
Google Scholar
Magoc T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27(21):2957–63. Epub 2011/09/10. https://doi.org/10.1093/bioinformatics/btr507.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2014;12:59.
Article
PubMed
Google Scholar
Huson DH, Mitra S, Ruscheweyh H-J, Weber N, Schuster SC. Integrative analysis of environmental sequences using MEGAN4. Genome Res. 2011;21(9):1552–60. https://doi.org/10.1101/gr.120618.111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9(4):357–9. Epub 2012/03/06. https://doi.org/10.1038/nmeth.1923.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kopylova E, Noe L, Touzet H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28(24):3211–7. Epub 2012/10/17. https://doi.org/10.1093/bioinformatics/bts611.
Article
CAS
PubMed
Google Scholar
Knol J, Scholtens P, Kafka C, Steenbakkers J, Gro S, Helm K, et al. Colon microflora in infants fed formula with galacto- and fructo-oligosaccharides: more like breast-fed infants. J Pediatr Gastroenterol Nutr. 2005;40(1):36–42. https://doi.org/10.1097/00005176-200501000-00007.
Article
CAS
PubMed
Google Scholar
Smith CA, Want EJ, O'Maille G, Abagyan R, Siuzdak G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem. 2006;78(3):779–87. https://doi.org/10.1021/ac051437y.
Article
CAS
PubMed
Google Scholar
Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin P, O'Hara RB, et al. Package ‘vegan’—community ecology package, version 2.0–4. 2012.
Google Scholar