Brode SK, Caley CL, Marras TK. The epidemiologic relationship between tuberculosis and non-tuberculous mycobacterial disease: a systematic review. Int J Tuberc Lung Dis. 2014;18(11):1370–7. https://doi.org/10.5588/ijtld.14.0120.
Article
CAS
PubMed
Google Scholar
Adjemian J, Olivier KN, Seitz AE, Holland SM, Prevots DR. Prevalence of nontuberculous mycobacterial lung disease in U.S. Medicare beneficiaries. Am J Respir Crit Care Med. 2012;185(8):881–6. https://doi.org/10.1164/rccm.201111-2016OC.
Article
PubMed
PubMed Central
Google Scholar
Raju R, Raju SM, Zhao Y, Rubin EJ. Leveraging advances in tuberculosis diagnosis and treatment to address nontuberculous mycobacterial disease. Emerg Infect Dis. 2016;22(3):365–9. https://doi.org/10.3201/eid2203.151643.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cowman S, van Ingen J, Griffith DE, Loebinger MR. Non-tuberculous mycobacterial pulmonary disease. Eur Respir J. 2019;54(1):1900250. https://doi.org/10.1183/13993003.00250-2019.
Article
CAS
PubMed
Google Scholar
Namkoong H, Kurashima A, Morimoto K, Hoshino Y, Hasegawa N, Ato M, et al. Epidemiology of pulmonary nontuberculous mycobacterial disease, Japan. Emerg Infect Dis. 2016;22(6):1116–7. https://doi.org/10.3201/eid2206.151086.
Article
PubMed
PubMed Central
Google Scholar
Periwal Y, Patowary A, Vellarikkal SK, Gupta A, Singh M, Mittal A, et al. Comparative whole-genome analysis of clinical isolates reveals characteristic architecture of Mycobacterium tuberculosis pangenome. PLoS One. 2015;10(4):e0122979. https://doi.org/10.1371/journal.pone.0122979.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang T, Zhong J, Zhang J, Li C, Yu X, Xiao J, et al. Pan-genomic study of Mycobacterium tuberculosis reflecting the primary/secondary genes, generality/individuality, and the interconversion through copy number variations. Front Microbiol. 2018;9:1886. https://doi.org/10.3389/fmicb.2018.01886.
Article
PubMed
PubMed Central
Google Scholar
Das S, Pettersson BMF, Behra PRK, Mallick A, Cheramie M, Ramesh M, et al. Extensive genomic diversity among Mycobacterium marinum strains revealed by whole genome sequencing. Sci Rep. 2020;10:5246.
Article
CAS
PubMed
PubMed Central
Google Scholar
Uchiya K, Tomida S, Nakagawa T, Asahi S, Nikai T, Ogawa K. Comparative genome analyses of Mycobacterium avium reveal genomic features of its subspecies and strains that cause progression of pulmonary disease. Sci Rep. 2017;7(1):39750. https://doi.org/10.1038/srep39750.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rindi L, Garzelli C. Genetic diversity and phylogeny of Mycobacterium avium. Infect Genet Evol. 2014;21:375–83. https://doi.org/10.1016/j.meegid.2013.12.007.
Article
PubMed
Google Scholar
Mijs W, de Haas P, Rossau R, Van der Laan T, Rigouts L, Portaels F, et al. Molecular evidence to support a proposal to reserve the designation Mycobacterium avium subsp avium for bird-type isolates and ‘M. avium subsp. hominissuis’ for the human/porcine type of M. avium. Int. J. Syst. Evol. Microbiol. 2002;52:1505–18.
CAS
PubMed
Google Scholar
Thorel MF, Krichevsky M, Lévy-Frébault VV. Numerical taxonomy of mycobactin-dependent mycobacteria, emended description of Mycobacterium avium, and description of Mycobacterium avium subsp. avium subsp. nov., Mycobacterium avium subsp. paratuberculosis subsp. nov., and Mycobacterium avium subsp. silvaticum subsp. nov. Int J Syst Bacteriol. 1990;40(3):254–60. https://doi.org/10.1099/00207713-40-3-254.
Article
CAS
PubMed
Google Scholar
Lee S-Y, Kim B-J, Kim H, Won Y-S, Jeon CO, Jeong J, et al. Mycobacterium paraintracellulare sp. nov., for the genotype INT-1 of Mycobacterium intracellulare. Int J Syst Evol Microbiol. 2016;66(8):3132–41. https://doi.org/10.1099/ijsem.0.001158.
Article
CAS
PubMed
Google Scholar
Kim B-J, Math RK, Jeon CO, Yu H-K, Park Y-G, Kook Y-H, et al. Mycobacterium yongonense sp. nov., a slow-growing non-chromogenic species closely related to Mycobacterium intracellulare. Int J Syst Evol Microbiol. 2013;63(Pt_1):192–9. https://doi.org/10.1099/ijs.0.037465-0.
Article
PubMed
Google Scholar
Saini V, Raghuvanshi S, Talwar GP, Ahmed N, Khurana JP, Hasnain SE, et al. Polyphasic taxonomic analysis establishes Mycobacterium indicus pranii as a distinct species. PLoS One. 2009;4(7):e6263. https://doi.org/10.1371/journal.pone.0006263.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saini V, Raghuvanshi S, Khurana JP, Ahmed N, Hasnain SE, Tyagi AK, et al. Massive gene acquisitions in Mycobacterium indicus pranii provide a perspective on mycobacterial evolution. Nucleic Acids Res. 2012;40(21):10832–50. https://doi.org/10.1093/nar/gks793.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim B-J, Choi B-S, Lim J-S, Choi I-Y, Kook Y-H, Kim B-J. Complete genome sequence of Mycobacterium intracellulare clinical strain MOTT-64, belonging to the INT1 genotype. J Bacteriol. 2012;194(12):3268. https://doi.org/10.1128/JB.00471-12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim S-Y, Park HY, Jeong B-H, Jeon K, Huh HJ, Ki C-S, et al. Molecular analysis of clinical isolates previously diagnosed as Mycobacterium intracellulare reveals incidental findings of “Mycobacterium indicus pranii” genotypes in human ling infection. BMC Infect Dis. 2015;15(1):406. https://doi.org/10.1186/s12879-015-1140-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tortoli E, Fedrizzi T, Meehan CJ, Trovato A, Grottola A, Giacobazzi R, et al. The new phylogeny of the genus Mycobacterium: the old and the news. Infect Genet Evol. 2017;56:19–25. https://doi.org/10.1016/j.meegid.2017.10.013.
Article
PubMed
Google Scholar
Matsumoto Y, Kinjo T, Motooka D, Nabeya D, Jung N, Uechi K, et al. Comprehensive subspecies identification of 175 nontuberculous mycobacteria species based on 7547 genomic profiles. Emerg Microbes Infect. 2019;8(1):1043–53. https://doi.org/10.1080/22221751.2019.1637702.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tateishi Y, Hirayama Y, Ozeki Y, Nishiuchi Y, Yoshimura M, Kang J, et al. Virulence of Mycobacterium avium complex strains isolated from immunocompetent patients. Microb Pathog. 2009;46(1):6–12. https://doi.org/10.1016/j.micpath.2008.10.007.
Article
CAS
PubMed
Google Scholar
Tateishi Y, Kitada S, Miki K, Maekura R, Ogura Y, Ozeki Y, et al. Whole-genome sequence of the hypervirulent clinical strain Mycobacterium intracellulare M.i.198. J Bacteriol. 2012;194:6336.
Article
CAS
PubMed
PubMed Central
Google Scholar
Uchiya K, Takahashi H, Yagi T, Moriyama M, Inagaki T, Ishikawa K, et al. Comparative genome analysis of Mycobacterium avium revealed genetic diversity in strains that cause pulmonary and disseminated disease. PLoS One. 2013;8(8):e71831. https://doi.org/10.1371/journal.pone.0071831.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bannantine JP, Wu CW, Hsu C, Zhou S, Schwartz DC, Bayles DO, et al. Genome sequencing of ovine isolates of Mycobacterium avium subspecies paratuberculosis offers insights into host association. BMC Genomics. 2012;13(1):89. https://doi.org/10.1186/1471-2164-13-89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Casali N, Riley LW. A phylogenomic analysis of the Actinomycetales mce operons. BMC Genomics. 2007;8(1):60. https://doi.org/10.1186/1471-2164-8-60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hemati Z, Derakhshandeh A, Haghkhah M, Chaubey KK, Gupta S, Singh M, et al. Mammalian cell entry operons; novel and major subset candidates for diagnosis with special reference to Mycobacterium avium subspecies paratuberculosis infection. Vet Quartery. 2019;39(1):65–75. https://doi.org/10.1080/01652176.2019.1641764.
Article
CAS
Google Scholar
Zao J-W, Sim Z-Q, Zhang X-Y, Zhang Y, Liu J, Ye J, et al. Mycobacterial 3-hydroxyacyl-l-thioester dehydratase Y derived from Mycobacterium tuberculosis induces COX-2 expression in mouse macrophages through MAPK-NF-κB pathway. Immunol Lett. 2014;161(1):125–32. https://doi.org/10.1016/j.imlet.2014.05.013.
Article
CAS
Google Scholar
Tettelin H, Riley D, Cattuto C, Medini D. Comparative genomics: the bacterial pan-genome. Curr Opin Microbiol. 2008;11(5):472–7. https://doi.org/10.1016/j.mib.2008.09.006.
Article
CAS
PubMed
Google Scholar
Chaudhari NM, Gupta VK, Dutta C. BPGA- an ultra-fast pan-genome analysis pipeline. Sci Rep. 2016;6(1):24373. https://doi.org/10.1038/srep24373.
Article
CAS
PubMed
PubMed Central
Google Scholar
van Ingen J, Turenne CY, Tortoli E, Wallace RJ Jr, Brown-Elliott BA. A definition of the Mycobacterium avium complex for taxonomical and clinical purposes, a review. Int J Syst Evol Microbiol. 2018;68(11):3666–77. https://doi.org/10.1099/ijsem.0.003026.
Article
CAS
PubMed
Google Scholar
Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T, Kyrpides NC, et al. Genome-based taxonomic classification of the phylum Actinobacteria. Front Microbiol. 2018;9:2007. https://doi.org/10.3389/fmicb.2018.02007.
Article
PubMed
PubMed Central
Google Scholar
Tortoli E, Meehan CJ, Grottola A, Fregni Serpini G, Fabio A, Trovato A, et al. Genome-based taxonomic revision detects a number of synonymous taxa in the genus Mycobacterium. Infect Genet Evol. 2019;75:103983. https://doi.org/10.1016/j.meegid.2019.103983.
Article
CAS
PubMed
Google Scholar
Castejon M, Menéndez MC, Comas I, Vicente A, Garcia MJ. Whole-genome sequence analysis of the Mycobacterium avium complex and proposal of the transfer of Mycobacterium yongonense to Mycobaterium intracellulare subsp. yonogense susbp. Int J System Evol Microbiol. 2018;68(6):1998–2005. https://doi.org/10.1099/ijsem.0.002767.
Article
CAS
Google Scholar
Tortoli E, Rindi L, Garcia MJ, Chiaradonna P, Dei R, Garzelli C, et al. Proposal to elevate the genetic variant MAC-A, included in the Mycobacterium avium complex, to species rank as Mycobacterium chimaera sp. nov. Int J Syst Evol Microbiol. 2004;54(4):1277–85. https://doi.org/10.1099/ijs.0.02777-0.
Article
CAS
PubMed
Google Scholar
Kasperbauer SH, Daley CL. Mycobacterium chimaera infections related to the heater-cooler unit outbreak: A guide to diagnosis and management. Clin Infect Dis. 2019;68(7):1244–50. https://doi.org/10.1093/cid/ciy789.
Article
CAS
PubMed
Google Scholar
Riojas MA, McGough KJ, Rider-Riojas CJ, Rastogi N, Hazbón MH. Phylogenomic analysis of the species of the Mycobacterium tuberculosis complex demonstrates that Mycobacterium africanum, Mycobacterium bovis, Mycobacterium caprae, Mycobacterium microti and Mycobacterium pinnipedii are later heterotypic synonyms of Mycobacterium tuberculosis. Int J Syst Evol Microbiol. 2018;68(1):324–32. https://doi.org/10.1099/ijsem.0.002507.
Article
CAS
PubMed
Google Scholar
Kim S-Y, Shin SH, Moon SM, Yang B, Kim H, Kwon OJ, et al. Distribution and clinical significance of Mycobacterium avium complex species isolated from respiratory specimens. Diag Microb Infect Dis. 2017;88(2):125–37. https://doi.org/10.1016/j.diagmicrobio.2017.02.017.
Article
Google Scholar
Dumas E, Boritsch EC, Vandenbogaert M, de la Vega RCR, Thiberge J-M, Caro V, et al. Mycobacterial pan-genome analysis suggests important role of plasmids in the radiation of type VII secretion systems. Genome Biol Evol. 2016;8(2):387–402. https://doi.org/10.1093/gbe/evw001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Daley CL, Iaccarino JM Jr, Lange C, Cambau E, Wallace RJ, Andrejak C, et al. Treatment of nontuberculous mycobacterial pulmonary disease: an official ATS/ERS/ESCMID/IDSA clinical practice guideline: executive summary. Eur Respit J. 2020;71:e1–36.
Google Scholar
Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Gordin F, et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med. 2007;175(4):367–416. https://doi.org/10.1164/rccm.200604-571ST.
Article
CAS
PubMed
Google Scholar
Maekura R, Okuda Y, Hirotani A, Kitada S, Hiraga T, Yoshimura K, et al. Clinical and prognostic importance of serotyping Mycobacterium avium-Mycobacterium intracellulare complex isolates in human immunodeficiency virus-negative patients. J Clin Microbiol. 2005;43(7):3150–8. https://doi.org/10.1128/JCM.43.7.3150-3158.2005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pandey AK, Sassetti CM. Mycobacterial persistence requires the utilization of host cholesterol. Proc Natl Acad Sci U S A. 2008;105(11):4376–80. https://doi.org/10.1073/pnas.0711159105.
Article
PubMed
PubMed Central
Google Scholar
Forrellad MA, McNeil M, Santangelo Mde L, Blanco FC, García E, Klepp LI, et al. Role of the Mce1 transporter in the lipid homeostasis of Mycobacterium tuberculosis. Tuberculosis(Edinb). 2014;94:170–7.
Article
CAS
Google Scholar
Tateishi Y, Minato Y, Baughn AD, Ohnishi H, Nishiyama A, Ozeki Y, et al. Genome-wide identification of essential genes in Mycobacterium intracellulare by transposon sequencing - implication for metabolic remodeling. Sci Rep. 2020;10(1):5449. https://doi.org/10.1038/s41598-020-62287-2.
Article
PubMed
PubMed Central
Google Scholar
Kim B-J, Hong S-H, Kook Y-H, Kim B-J. Molecular evidence of lateral gene transfer in rpoB gene of Mycobacterium yongonense strains via multlilocus sequence analysis. PLoS One. 2013;8(1):e51846. https://doi.org/10.1371/journal.pone.0051846.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fedrizzi T, Meehan CJ, Grottola A, Giacobazzi E, Fregni Serpini G, Tagliazucchi S, et al. Genomic characterization of nontuberculous mycobacteria. Sci Rep. 2017;7(1):45258. https://doi.org/10.1038/srep45258.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stinear TP, Seemann T, Harrison PF, Jenkin GA, Davies JK, Johnson PD, et al. Insights from the complete genome sequence of Mycobacterium marinum on the evolution of Mycobacterium tuberculosis. Genome Res. 2008;18(5):729–41. https://doi.org/10.1101/gr.075069.107.
Article
CAS
PubMed
PubMed Central
Google Scholar
van Helden P, Victor T, Warren R, van Helden E. Isolation of DNA from Mycobacterium tuberculosis. In Parish T, Stoker NG, editors. Mycobacterium tuberculosis Protocols, Humana Press; 2001. p 19–30.
Tanizawa Y, Fujisawa T, Nakamura Y. DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication. Bioinformatics. 2018;34(6):1037–9. https://doi.org/10.1093/bioinformatics/btx713.
Article
CAS
PubMed
Google Scholar