Graumann PL. Cytoskeletal elements in bacteria. Annu Rev Microbiol. 2007;61:589–618.
Article
CAS
PubMed
Google Scholar
Ausmees N, Kuhn JR, Jacobs-Wagner C. The bacterial cytoskeleton: an intermediate filament-like function in cell shape. Cell. 2003;115(6):705–13.
Article
CAS
PubMed
Google Scholar
Jones LJ, Carballido-López R, Errington J. Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis. Cell. 2001;104(6):913–22.
Article
CAS
PubMed
Google Scholar
Bi EF, Lutkenhaus J. FtsZ ring structure associated with division in Escherichia coli. Nature. 1991;354(6349):161–4.
Article
CAS
PubMed
Google Scholar
Aylett CHS, Wang Q, Michie KA, Amos LA, Löwe J. Filament structure of bacterial tubulin homologue TubZ. Proc Natl Acad Sci U S A. 2010;107(46):19766–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Komeili A, Li Z, Newman DK, Jensen GJ. Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK. Science. 2006;311(5758):242–5.
Article
CAS
PubMed
Google Scholar
Rose A, Schraegle SJ, Stahlberg EA, Meier I. Coiled-coil protein composition of 22 proteomes--differences and common themes in subcellular infrastructure and traffic control. BMC Evol Biol. 2005;5:66.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lupas AN, Bassler J, Dunin-Horkawicz S. The structure and topology of α-helical coiled coils. Subcell Biochem. 2017;82:95–129.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ebersbach G, Galli E, Møller-Jensen J, Löwe J, Gerdes K. Novel coiled-coil cell division factor ZapB stimulates Z ring assembly and cell division. Mol Microbiol. 2008;68(3):720–35.
Article
CAS
PubMed
Google Scholar
Adamczyk M, Dolowy P, Jonczyk M, Thomas CM, Jagura-Burdzy G. The kfrA gene is the first in a tricistronic operon required for survival of IncP-1 plasmid R751. Microbiology (Reading, Engl). 2006;152(Pt 6):1621–37.
Article
CAS
Google Scholar
Jagura-Burdzy G, Thomas CM. kfrA gene of broad host range plasmid RK2 encodes a novel DNA-binding protein. J Mol Biol. 1992;225(3):651–60.
Article
CAS
PubMed
Google Scholar
Kulinska A, Czeredys M, Hayes F, Jagura-Burdzy G. Genomic and functional characterization of the modular broad-host-range RA3 plasmid, the archetype of the IncU group. Appl Environ Microbiol. 2008;74(13):4119–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Norberg P, Bergström M, Jethava V, Dubhashi D, Hermansson M. The IncP-1 plasmid backbone adapts to different host bacterial species and evolves through homologous recombination. Nat Commun. 2011;2:268.
Article
PubMed
CAS
Google Scholar
Syamaladevi DP, Spudich JA, Sowdhamini R. Structural and functional insights on the myosin superfamily. Bioinform Biol Insights. 2012;6:11–21.
CAS
PubMed
PubMed Central
Google Scholar
Vazquez Nunez R, Ruiz Avila LB, Gruber S. Transient DNA Occupancy of the SMC Interarm Space in Prokaryotic Condensin. Mol Cell. 2019;75(2):209–23 e6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Diebold-Durand M-L, Lee H, Ruiz Avila LB, Noh H, Shin H-C, Im H, et al. Structure of Full-Length SMC and Rearrangements Required for Chromosome Organization. Mol Cell. 2017;67(2):334–47 e5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krepel D, Cheng RR, Di Pierro M, Onuchic JN. Deciphering the structure of the condensin protein complex. Proc Natl Acad Sci USA. 2018;115(47):11911–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nolivos S, Upton AL, Badrinarayanan A, Müller J, Zawadzka K, Wiktor J, et al. MatP regulates the coordinated action of topoisomerase IV and MukBEF in chromosome segregation. Nat Commun. 2016;7:10466.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Brandão HB, Le TBK, Laub MT, Rudner DZ. Bacillus subtilis SMC complexes juxtapose chromosome arms as they travel from origin to terminus. Science. 2017;355(6324):524–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kamada K, Barillà D. Combing Chromosomal DNA Mediated by the SMC Complex: Structure and Mechanisms. Bioessays. 2018;40(2). https://doi.org/10.1002/bies.201700166.
Iiyama K, Mon H, Mori K, Mitsudome T, Lee JM, Kusakabe T, et al. Characterization of KfrA proteins encoded by a plasmid of Paenibacillus popilliae ATCC 14706(T). Meta Gene. 2015;4:29–44.
Article
PubMed
PubMed Central
Google Scholar
Van der Auwera GA, Król JE, Suzuki H, Foster B, Van Houdt R, Brown CJ, et al. Plasmids captured in C. metallidurans CH34: defining the PromA family of broad-host-range plasmids. Antonie Van Leeuwenhoek. 2009;96(2):193–204.
Article
PubMed
CAS
Google Scholar
Tauch A, Schneiker S, Selbitschka W, Pühler A, van Overbeek LS, Smalla K, et al. The complete nucleotide sequence and environmental distribution of the cryptic, conjugative, broad-host-range plasmid pIPO2 isolated from bacteria of the wheat rhizosphere. Microbiology (Reading, Engl). 2002;148(Pt 6):1637–53.
Article
CAS
Google Scholar
Fernández-López R, Garcillán-Barcia MP, Revilla C, Lázaro M, Vielva L, de la Cruz F. Dynamics of the IncW genetic backbone imply general trends in conjugative plasmid evolution. FEMS Microbiol Rev. 2006;30(6):942–66.
Article
PubMed
CAS
Google Scholar
Baxter JC, Funnell BE. Plasmid Partition Mechanisms. Microbiol Spectr. 2014;2(6). https://doi.org/10.1128/microbiolspec.PLAS-0023-2014.
Kulinska A, Cao Y, Macioszek M, Hayes F, Jagura-Burdzy G. The centromere site of the segregation cassette of broad-host-range plasmid RA3 is located at the border of the maintenance and conjugative transfer modules. Appl Environ Microbiol. 2011;77(7):2414–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Adamczyk Z, Kujda M, Nattich-Rak M, Ludwiczak M, Jagura-Burdzy G, Adamczyk M. Revealing properties of the KfrA plasmid protein via combined DLS, AFM and electrokinetic measurements. Colloids Surf B Biointerfaces. 2013;103:635–41.
Article
CAS
PubMed
Google Scholar
Lukaszewicz M, Kostelidou K, Bartosik AA, Cooke GD, Thomas CM, Jagura-Burdzy G. Functional dissection of the ParB homologue (KorB) from IncP-1 plasmid RK2. Nucleic Acids Res. 2002;30(4):1046–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Porollo AA, Adamczak R, Meller J. POLYVIEW: a flexible visualization tool for structural and functional annotations of proteins. Bioinformatics. 2004;20(15):2460–2.
Article
CAS
PubMed
Google Scholar
Kujda M, Adamczyk Z, Jagura-Burdzy G, Adamczyk M. KfrA plasmid protein monolayers on latex particles-electrokinetic measurements. Colloids Surf B Biointerfaces. 2013;112:165–70.
Article
CAS
PubMed
Google Scholar
Hirano T. At the heart of the chromosome: SMC proteins in action. Nat Rev Mol Cell Biol. 2006;7(5):311–22.
Article
CAS
PubMed
Google Scholar
Nasmyth K, Haering CH. The structure and function of SMC and kleisin complexes. Annu Rev Biochem. 2005;74:595–648.
Article
CAS
PubMed
Google Scholar
Dunin-Horkawicz S, Lupas AN. Measuring the conformational space of square four-helical bundles with the program samCC. J Struct Biol. 2010;170(2):226–35.
Article
CAS
PubMed
Google Scholar
Heger A, Holm L. Rapid automatic detection and alignment of repeats in protein sequences. Proteins. 2000;41(2):224–37.
Article
CAS
PubMed
Google Scholar
Ludwiczak J, Winski A, Szczepaniak K, Alva V, Dunin-Horkawicz S. DeepCoil-a fast and accurate prediction of coiled-coil domains in protein sequences. Bioinformatics. 2019;35(16):2790–5.
Article
CAS
PubMed
Google Scholar
Salje J, Gayathri P, Löwe J. The ParMRC system: molecular mechanisms of plasmid segregation by actin-like filaments. Nat Rev Microbiol. 2010;8(10):683–92.
Article
CAS
PubMed
Google Scholar
Ebersbach G, Gerdes K. Plasmid segregation mechanisms. Annu Rev Genet. 2005;39:453–79.
Article
CAS
PubMed
Google Scholar
Wang R, Liu H, Zhao X, Li J, Wan K. IncA/C plasmids conferring high azithromycin resistance in vibrio cholerae. Int J Antimicrob Agents. 2018;51(1):140–4.
Article
CAS
PubMed
Google Scholar
Li X, Top EM, Wang Y, Brown CJ, Yao F, Yang S, et al. The broad-host-range plasmid pSFA231 isolated from petroleum-contaminated sediment represents a new member of the PromA plasmid family. Front Microbiol. 2014;5:777.
PubMed
Google Scholar
Mela F, Fritsche K, Boersma H, van Elsas JD, Bartels D, Meyer F, et al. Comparative genomics of the pIPO2/pSB102 family of environmental plasmids: sequence, evolution, and ecology of pTer331 isolated from Collimonas fungivorans Ter331. FEMS Microbiol Ecol. 2008;66(1):45–62.
Article
CAS
PubMed
Google Scholar
Rhodes G, Parkhill J, Bird C, Ambrose K, Jones MC, Huys G, et al. Complete nucleotide sequence of the conjugative tetracycline resistance plasmid pFBAOT6, a member of a group of IncU plasmids with global ubiquity. Appl Environ Microbiol. 2004;70(12):7497–510.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liapis E, Bour M, Triponney P, Jové T, Zahar J-R, Valot B, et al. Identification of diverse Integron and plasmid structures carrying a novel Carbapenemase among Pseudomonas species. Front Microbiol. 2019;10:404.
Article
PubMed
PubMed Central
Google Scholar
Leão SC, Matsumoto CK, Carneiro A, Ramos RT, Nogueira CL, Lima JD, et al. The detection and sequencing of a broad-host-range conjugative IncP-1β plasmid in an epidemic strain of Mycobacterium abscessus subsp. bolletii. PLoS One. 2013;8(4):e60746.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sen D, Van der Auwera GA, Rogers LM, Thomas CM, Brown CJ, Top EM. Broad-host-range plasmids from agricultural soils have IncP-1 backbones with diverse accessory genes. Appl Environ Microbiol. 2011;77(22):7975–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bitar I, Caltagirone M, Villa L, Mattioni Marchetti V, Nucleo E, Sarti M, et al. Interplay among IncA and blaKPC-Carrying Plasmids in Citrobacter freundii. Antimicrob Agents Chemother. 2019;63(5):e02609–18. https://doi.org/10.1128/AAC.02609-18.
Wen Y, Pu X, Zheng W, Hu G. High prevalence of plasmid-mediated quinolone resistance and IncQ plasmids carrying qnrS2 gene in Bacteria from Rivers near hospitals and aquaculture in China. PLoS One. 2016;11(7):e0159418.
Article
PubMed
PubMed Central
CAS
Google Scholar
Moriscot C, Gribaldo S, Jault J-M, Krupovic M, Arnaud J, Jamin M, et al. Crenarchaeal CdvA forms double-helical filaments containing DNA and interacts with ESCRT-III-like CdvB. PLoS One. 2011;6(7):e21921.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hui MP, Galkin VE, Yu X, Stasiak AZ, Stasiak A, Waldor MK, et al. ParA2, a Vibrio cholerae chromosome partitioning protein, forms left-handed helical filaments on DNA. Proc Natl Acad Sci U S A. 2010;107(10):4590–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pérez-Rueda E, Collado-Vides J. Common history at the origin of the position-function correlation in transcriptional regulators in archaea and bacteria. J Mol Evol. 2001;53(3):172–9.
Article
PubMed
Google Scholar
Jagura-Burdzy G, Kostelidou K, Pole J, Khare D, Jones A, Williams DR, et al. IncC of broad-host-range plasmid RK2 modulates KorB transcriptional repressor activity in vivo and operator binding in vitro. J Bacteriol. 1999;181(9):2807–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Adamczyk M, Jagura-Burdzy G. Spread and survival of promiscuous IncP-1 plasmids. Acta Biochim Pol. 2003;50(2):425–53.
Article
CAS
PubMed
Google Scholar
Lewicka E, Mitura M, Steczkiewicz K, Kieracinska J, Skrzynska K, Adamczyk M, et al. Unique properties of alpha-helical DNA-binding KfrA protein of RA3 plasmid from IncU incompatibility group and its host-dependent role in plasmid maintenance. Appl Environ Microbiol. 2020.
Yanagida T, Ueda M, Murata T, Esaki S, Ishii Y. Brownian motion, fluctuation and life. BioSystems. 2007;88(3):228–42.
Article
CAS
PubMed
Google Scholar
Yanagida T, Esaki S, Iwane AH, Inoue Y, Ishijima A, Kitamura K, et al. Single-motor mechanics and models of the myosin motor. Philos Trans R Soc Lond Ser B Biol Sci. 2000;355(1396):441–7.
Article
CAS
Google Scholar
Hurme R, Namork E, Nurmiaho-Lassila EL, Rhen M. Intermediate filament-like network formed in vitro by a bacterial coiled coil protein. J Biol Chem. 1994;269(14):10675–82.
Article
CAS
PubMed
Google Scholar
Hurme R, Berndt KD, Normark SJ, Rhen M. A proteinaceous gene regulatory thermometer in salmonella. Cell. 1997;90(1):55–64.
Article
CAS
PubMed
Google Scholar
Stewart CM, Buffalo CZ, Valderrama JA, Henningham A, Cole JN, Nizet V, et al. Coiled-coil destabilizing residues in the group A Streptococcus M1 protein are required for functional interaction. Proc Natl Acad Sci USA. 2016;113(34):9515–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
McNamara C, Zinkernagel AS, Macheboeuf P, Cunningham MW, Nizet V, Ghosh P. Coiled-coil irregularities and instabilities in group a Streptococcus M1 are required for virulence. Science. 2008;319(5868):1405–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bouet J-Y, Funnell BE. Plasmid Localization and Partition in Enterobacteriaceae. EcoSal Plus. 2019;8(2). https://doi.org/10.1128/ecosalplus.ESP-0003-2019.
Hatano T, Niki H. Partitioning of P1 plasmids by gradual distribution of the ATPase ParA. Mol Microbiol. 2010;78(5):1182–98.
Article
CAS
PubMed
Google Scholar
Lim HC, Surovtsev IV, Beltran BG, Huang F, Bewersdorf J, Jacobs-Wagner C. Evidence for a DNA-relay mechanism in ParABS-mediated chromosome segregation. Elife. 2014;3:e02758.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vecchiarelli AG, Neuman KC, Mizuuchi K. A propagating ATPase gradient drives transport of surface-confined cellular cargo. Proc Natl Acad Sci U S A. 2014;111(13):4880–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Studier FW, Moffatt BA. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986;189(1):113–30.
Article
CAS
PubMed
Google Scholar
Birnboim HC, Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979;7(6):1513–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arnold FH. Metal-affinity separations: a new dimension in protein processing. Biotechnology (NY). 1991;9(2):151–6.
CAS
Google Scholar
Perczel A, Hollósi M, Tusnády G, Fasman GD. Convex constraint analysis: a natural deconvolution of circular dichroism curves of proteins. Protein Eng. 1991;4(6):669–79.
Article
CAS
PubMed
Google Scholar
Gill SC, von Hippel PH. Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem. 1989;182(2):319–26.
Article
CAS
PubMed
Google Scholar
Greenfield NJ. Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc. 2006;1(6):2876–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vincent TL, Green PJ, Woolfson DN. LOGICOIL--multi-state prediction of coiled-coil oligomeric state. Bioinformatics. 2013;29(1):69–76.
Article
CAS
PubMed
Google Scholar
Das R, André I, Shen Y, Wu Y, Lemak A, Bansal S, et al. Simultaneous prediction of protein folding and docking at high resolution. Proc Natl Acad Sci U S A. 2009;106(45):18978–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rämisch S, Lizatović R, André I. Exploring alternate states and oligomerization preferences of coiled-coils by de novo structure modeling. Proteins. 2015;83(2):235–47.
Article
PubMed
CAS
Google Scholar