McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Loso T, Douglas AE, et al. Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci U S A. 2013;110(9):3229–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moran NA, McCutcheon JP, Nakabachi A. Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet. 2008;42:165–90.
Article
CAS
PubMed
Google Scholar
O'Neill SL, Hoffmann AA, Werren JH, editors. Influential passengers. New York: Oxford University Press; 1997.
Google Scholar
Stouthamer R, Breeuwer JAJ, Hurst GDD. Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annu Rev Microbiol. 1999;53:71–102.
Article
CAS
PubMed
Google Scholar
Werren JH. Biology of Wolbachia. Annu Rev Entomol. 1997;42:587–609.
Article
CAS
PubMed
Google Scholar
Zug R, Hammerstein P. Bad guys turned nice? A critical assessment of Wolbachia mutualisms in arthropod hosts. Biol Rev. 2015;90(1):89–111.
Article
PubMed
Google Scholar
Clark MA, Moran NA, Baumann P, Wernegreen JJ. Cospeciation between bacterial endosymbionts (Buchnera) and a recent radiation of aphids (Uroleucon) and pitfalls of testing for phylogenetic congruence. Evolution. 2000;54(2):517–25.
Article
CAS
PubMed
Google Scholar
Novakova E, Hypsa V, Moran NA. Arsenophonus, an emerging clade of intracellular symbionts with a broad host distribution. BMC Microbiol. 2009;20(9):143. https://doi.org/10.1186/1471-2180-9-143.
Article
PubMed
PubMed Central
Google Scholar
Burke GR, Moran NA. Massive genomic decay in Serratia symbiotica, a recently evolved symbiont of aphids. Genom Biol Evol. 2011;3:195–208.
Article
CAS
Google Scholar
Manzano-Marin A, Lamelas A, Moya A, Latorre A. Comparative genomics of Serratia spp.: Two paths towards endosymbiotic life. PLoS One. 2012;7(10).
Article
PubMed
PubMed Central
CAS
Google Scholar
Fenn K, Blaxter M. Are filarial nematode Wolbachia obligate mutualist symbionts? TREE. 2004;19(4):163–6.
PubMed
Google Scholar
Ferri E, Bain O, Barbuto M, Martin C, Lo N, Uni S, et al. New insights into the evolution of Wolbachia infections in filarial nematodes inferred from a large range of screened species. PLoS One. 2011;6(6):e20843.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nikoh N, Hosokawa T, Moriyama M, Oshima K, Hattori M, Fukatsu T. Evolutionary origin of insect-Wolbachia nutritional mutualism. Proc Natl Acad Sci U S A. 2014;111(28):10257–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huigens ME, de Almeida RP, Boons PAH, Luck RF, Stouthamer R. Natural interspecific and intraspecific horizontal transfer of parthenogenesis-inducing Wolbachia in Trichogramma wasps. Proc R Soc Lond B. 2004;271(1538):509–15.
Article
CAS
Google Scholar
Caspi-Fluger A, Inbar M, Mozes-Daube N, Katzir N, Portnoy V, Belausov E, et al. Horizontal transmission of the insect symbiont Rickettsia is plant-mediated. Proc R Soc Lond B. 2012;279(1734):1791–6.
Article
CAS
Google Scholar
Dedeine F, Bouletreau M, Vavre F. Wolbachia requirement for oogenesis: occurrence within the genus Asobara (Hymenoptera, Braconidae) and evidence for intraspecific variation in A. tabida. Heredity. 2005;95(5):394–400.
Article
CAS
PubMed
Google Scholar
Dedeine F, Vavre F, Shoemaker DD, Bouletreau M. Intra-individual coexistence of a Wolbachia strain required for host oogenesis with two strains inducing cytoplasmic incompatibility in the wasp Asobara tabida. Evolution. 2004;58(10):2167–74.
Article
PubMed
Google Scholar
Russell JA, Funaro CF, Giraldo YM, Goldman-Huertas B, Suh D, Kronauer DJC, et al. A veritable menagerie of heritable bacteria from ants, butterflies, and beyond: Broad molecular surveys and a systematic review. PLoS One. 2012;7(12):e51027.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weeks AR, Velten R, Stouthamer R. Prevalence of a new sex ratio distorting endosymbiotic bacterium among arthropods. Proc R Soc Lond Ser B. 2003;270:1857–65.
Article
Google Scholar
Zchori-Fein E, Perlman SJ, Kelly SE, Katzir N, Hunter MS. Characterization of a 'Bacteroidetes' symbiont in Encarsia wasps (Hymenoptera: Aphelinidae): proposal of 'Candidatus Cardinium hertigii'. Int J Syst Evol Microbiol. 2004;54:961–8.
Article
CAS
PubMed
Google Scholar
Noel GR, Atibalentja N. 'Candidatus Paenicardinium endonii', an endosymbiont of the plant-parasitic nematode Heterodera glycines (Nemata : Tylenchida), affiliated to the phylum Bacteroidetes. Int J Syst Evol Microbiol. 2006;56:1697–702.
Article
CAS
PubMed
Google Scholar
Showmaker KC, Walden KKO, Fields CJ, Lambert KN, Hudson ME. Genome sequence of the soybean cyst nematode (Heterodera glycines) endosymbiont "Candidatus Cardinium hertigii" strain cHgTN10. Genome Announc. 2018;6:e00624–18.
Article
PubMed
PubMed Central
Google Scholar
Chang J, Masters A, Avery A, Werren JH. A divergent Cardinium found in daddy long-legs (Arachnida: Opiliones). J Invertebr Pathol. 2010;105(3):220–7.
Article
CAS
PubMed
Google Scholar
Nakamura Y, Kawai S, Yukuhiro F, Ito S, Gotoh T, Kisimoto R, et al. Prevalence of Cardinium bacteria in planthoppers and spider mites and taxonomic revision of "Candidatus Cardinium hertigii" based on detection of a new Cardinium group from biting midges. Appl Environ Microbiol. 2009;75(21):6757–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zchori-Fein E, Gottlieb Y, Kelly SE, Brown JK, Wilson JM, Karr TL, et al. A newly discovered bacterium associated with parthenogenesis and a change in host selection behavior in parasitoid wasps. Proc Natl Acad Sci U S A. 2001;98(22):12555–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Provencher LM, Morse GE, Weeks AR, Normark BB. Parthenogenesis in the Aspidiotus nerii complex (Hemiptera : Diaspididae): a single origin of a worldwide, polyphagous lineage associated with Cardinium bacteria. Ann Entomol Soc Am. 2005;98(5):629–35.
Article
Google Scholar
Groot TVM, Breeuwer JAJ. Cardinium symbionts induce haploid thelytoky in most clones of three closely related Brevipalpus species. Exp Appl Acarol. 2006;39(3–4):257–71.
Article
PubMed
Google Scholar
Gebiola M, White JA, Cass BN, Kozuch A, Harris LR, Kelly SE, et al. Cryptic diversity, reproductive isolation and cytoplasmic incompatibility in a classic biological control success story. Biol J Linn Soc. 2016;117(2):217–30.
Article
Google Scholar
Gotoh T, Noda H, Ito S. Cardinium symbionts cause cytoplasmic incompatibility in spider mites. Heredity. 2007;98(1):13–20.
Article
CAS
PubMed
Google Scholar
Hunter MS, Perlman SJ, Kelly SE. A bacterial symbiont in the Bacteroidetes induces cytoplasmic incompatibility in the parasitoid wasp Encarsia pergandiella. Proc R Soc Lond Ser B. 2003;270:2185–90.
Article
Google Scholar
Perlman SJ, Kelly SE, Zchori-Fein E, Hunter MS. Cytoplasmic incompatibility and multiple symbiont infection in the ash whitefly parasitoid, Encarsia inaron. Biol Control. 2006;39(3):474–80.
Article
Google Scholar
Nakamura Y, Yukuhiro F, Matsumura M, Noda H. Cytoplasmic incompatibility involving Cardinium and Wolbachia in the white-backed planthopper Sogatella furcifera (Hemiptera: Delphacidae). Appl Entomol Zool. 2012;47(3):273–83.
Article
Google Scholar
Wu K, Hoy MA. Cardinium is associated with reproductive incompatibility in the predatory mite Metaseiulus occidentalis (Acari: Phytoseiidae). J Invertebr Pathol. 2012;110(3):359–65.
Article
PubMed
Google Scholar
Zhang XF, Zhao DX, Hong XY. Cardinium-the leading factor of cytoplasmic incompatibility in the planthopper Sogatella furcifera doubly infected with Wolbachia and Cardinium. Environ Entomol. 2012;41(4):833–40.
Article
Google Scholar
Nguyen DT, Morrow JL, Spooner-Hart RN, Riegler M. Independent cytoplasmic incompatibility induced by Cardinium and Wolbachia maintains endosymbiont coinfections in haplodiploid thrips populations. Evolution. 2017;71(4):995–1008.
Article
CAS
PubMed
Google Scholar
Takano SI, Tuda M, Takasu K, Furuya N, Imamura Y, Kim S, et al. Unique clade of alphaproteobacterial endosymbionts induces complete cytoplasmic incompatibility in the coconut beetle. Proc Natl Acad Sci U S A. 2017;114(23):6110–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Penz T, Schmitz-Esser S, Kelly SE, Cass BN, Muller A, Woyke T, et al. Comparative genomics suggests an independent origin of cytoplasmic incompatibility in Cardinium hertigii. PLoS Genet. 2012;8(10):e1003012.
Article
CAS
PubMed
PubMed Central
Google Scholar
White JA, Kelly SE, Cockburn SN, Perlman SJ, Hunter MS. Endosymbiont costs and benefits in a parasitoid infected with both Wolbachia and Cardinium. Heredity. 2011;106(4):585–91.
Article
PubMed
PubMed Central
Google Scholar
Penz T, Horn M, Schmitz-Esser S. The genome of the amoeba symbiont "Candidatus Amoebophilus asiaticus" encodes an afp-like prophage possibly used for protein secretion. Virulence. 2010;1(6):541–5.
Article
PubMed
Google Scholar
Santos-Garcia D, Rollat-Farnier PA, Beitia F, Zchori-Fein E, Vavre F, Mouton L, et al. The genome of Cardinium cBtQ1 provides insights into genome reduction, symbiont motility, and its settlement in Bemisia tabaci. Genome Biol Evol. 2014;6(4):1013–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Showmaker KC, Walden KKO, Fields CJ, Lambert KN, Hudson ME. Genome sequence of the soybean cyst nematode (Heterodera glycines) endosymbiont "Candidatus Cardinium hertigii" Strain cHgTN10. Microbiol Resour Announcements. 2018;6(26).
Siozios S, Pilgrim J, Darby AC, Baylis M, Hurst GDD. The draft genome of strain cCpun from biting midges confirms insect Cardinium are not a monophyletic group and reveals a novel gene family expansion in a symbiont. PeerJ. 2019;7.
Brown AMV, Wasala SK, Howe DK, Peetz AB, Zasada IA, Denver DR. Comparative genomics of Wolbachia-Cardinium dual endosymbiosis in a plant-parasitic nematode. Front Microbiol. 2018;9.
Zeng Z, Fu YT, Guo DY, Wu YX, Ajayi OE, Wu QF. Bacterial endosymbiont Cardinium cSfur genome sequence provides insights for understanding the symbiotic relationship in Sogatella furcifera host. BMC Genomics. 2018;19.
Glaeser SP, Kampfer P. Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Syst Appl Microbiol. 2015;38(4):237–45.
Article
CAS
PubMed
Google Scholar
Maddison WP. Gene trees in species trees. Syst Biol. 1997;46(3):523–36.
Article
Google Scholar
Edlund A, Ek K, Breitholtz M, Gorokhova E. Antibiotic-induced change of bacterial communities associated with the copepod Nitocra spinipes. PLoS One. 2012;7(3).
Article
CAS
PubMed
PubMed Central
Google Scholar
Fang YW, Liu LY, Zhang HL, Jiang DF, Chu D. Competitive ability and fitness differences between two introduced populations of the invasive whitefly Bemisia tabaci Q in China. PLoS One. 2014;9(6).
Article
PubMed
PubMed Central
Google Scholar
White JA, Kelly SE, Perlman SJ, Hunter MS. Cytoplasmic incompatibility in the parasitic wasp Encarsia inaron: disentangling the roles of Cardinium and Wolbachia symbionts. Heredity. 2009;102(5):483–9.
Article
CAS
PubMed
Google Scholar
Lewis SE, Rice A, Hurst GDD, Baylis M. First detection of endosymbiotic bacteria in biting midges Culicoides pulicaris and Culicoides punctatus, important Palaearctic vectors of bluetongue virus. Med Vet Entomol. 2014;28(4):453–6.
Article
CAS
PubMed
Google Scholar
Perlman SJ, Magnus SA, Copley CR. Pervasive associations between Cybaeus spiders and the bacterial symbiont Cardinium. J Invertebr Pathol. 2010;103(3):150–5.
Article
PubMed
Google Scholar
Zchori-Fein E, Perlman SJ. Distribution of the bacterial symbiont Cardinium in arthropods. Mol Ecol. 2004;13(6):2009–16.
Article
CAS
PubMed
Google Scholar
Jiggins FM, Bentley JK, Majerus MEN, Hurst GDD. Recent changes in phenotype and patterns of host specialization in Wolbachia bacteria. Mol Ecol. 2002;11(8):1275–83.
Article
PubMed
Google Scholar
Hoffmann AA, Clancy D, Duncan J. Naturally-occurring Wolbachia infection in Drosophila simulans that does not cause cytoplasmic incompatibility. Heredity. 1996;76:1–8.
Article
PubMed
Google Scholar
Bordenstein SR, Bordenstein SR. Eukaryotic association module in phage WO genomes from Wolbachia. Nat Comm. 2016;7.
LePage DP, Metcalf JA, Bordenstein SR, On JM, Perlmutter JI, Shropshire JD, et al. Prophage WO genes recapitulate and enhance Wolbachia-induced cytoplasmic incompatibility. Nature. 2017;543(7644):243 +.
Article
CAS
PubMed
PubMed Central
Google Scholar
Partridge SR. Analysis of antibiotic resistance regions in gram-negative bacteria. FEMS Microbiol Rev. 2011;35(5):820–55.
Article
CAS
PubMed
Google Scholar
Stokes HW, Gillings MR. Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into gram-negative pathogens. FEMS Microbiol Rev. 2011;35(5):790–819.
Article
CAS
PubMed
Google Scholar
Gerth M, Gansauge MT, Weigert A, Bleidorn C. Phylogenomic analyses uncover origin and spread of the Wolbachia pandemic. Nature Comm. 2014;5.
Maiden MCJ, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, et al. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A. 1998;95(6):3140–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bleidorn C, Gerth M. A critical re-evaluation of multilocus sequence typing (MLST) efforts in Wolbachia. FEMS Microbiol Ecol. 2018;94(1).
Arthofer W, Riegler M, Schuler H, Schneider D, Moder K, Miller WJ, et al. Allele Intersection Analysis: A Novel Tool for Multi Locus Sequence Assignment in Multiply Infected Hosts. PLoS One. 2011;6(7).
Article
CAS
PubMed Central
PubMed
Google Scholar
Schuler H, Arthofer W, Riegler M, Bertheau C, Krumbock S, Koppler K, et al. Multiple Wolbachia infections in Rhagoletis pomonella. Entomol Exp Appl. 2011;139(2):138–44.
Article
Google Scholar
Shoji S, Walker SE, Fredrick K. Ribosomal translocation: one step closer to the molecular mechanism. ACS Chem Biol. 2009;4(2):93–107.
Article
CAS
PubMed Central
PubMed
Google Scholar
Reece RJ, Maxwell A. DNA Gyrase - structure and function. Crit Rev Biochem Mol Biol. 1991;26(3–4):335–75.
Article
CAS
PubMed
Google Scholar
Ayala-Castro C, Saini A, Outten FW. Fe-s cluster assembly pathways in bacteria. Microbiol Mol Biol Rev. 2008;72(1):110 +.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fayet O, Ziegelhoffer T, Georgopoulos C. The GroES and GroEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. J Bacteriol. 1989;171(3):1379–85.
Article
CAS
PubMed Central
PubMed
Google Scholar
Koressaar T, Remm M. Enhancements and modifications of primer design program Primer3. Bioinformatics. 2007;23(10):1289–91.
Article
CAS
PubMed
Google Scholar
Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al. Primer3-new capabilities and interfaces. Nucleic Acids Res. 2012;40(15).
Article
CAS
PubMed Central
PubMed
Google Scholar
Messing J. New M13 vectors for cloning. Methods Enzymol. 1983;101:20–78.
Article
CAS
PubMed
Google Scholar
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Posada D. jModelTest: Phylogenetic model averaging. Mol Biol Evol. 2008;25(7):1253–6.
Article
CAS
PubMed
Google Scholar
Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19(12):1572–4.
Article
CAS
PubMed
Google Scholar
Maddison W, Maddison D. Mesquite: A modular system for evolutionary analysis. Version 3.51 2018 [Available from: http://www.mesquiteproject.org].