Rassi A Jr, Rassi A, Marin-Neto JA. Chagas disease. Lancet. 2010;375:1388–402.
Article
PubMed
Google Scholar
Clayton CE. Life without transcriptional control? From fly to man and back again. EMBO J. 2002;21:1881–8. https://doi.org/10.1093/emboj/21.8.1881.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alves LR, Guerra-Slompo EP, De Oliveira AV, Malgarin JS, Goldenberg S, Dallagiovanna B. MRNA localization mechanisms in Trypanosoma cruzi. PLoS One. 2013;8:1106–18.
Article
PubMed
PubMed Central
Google Scholar
Bartholomeu DC, de Paiva RMC, Mendes TAO, DaRocha WD, Teixeira SMR. Unveiling the intracellular survival gene kit of Trypanosomatid parasites. PLoS Pathog. 2014;10:e1004399.
Article
PubMed
PubMed Central
Google Scholar
Glisovic T, Bachorik JL, Yong J, Dreyfuss G. RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett. 2008;582:1977–86. https://doi.org/10.1016/j.febslet.2008.03.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alves LR, Ávila AR, Correa A, Holetz FB, Mansur FCB, Manque PA, et al. Proteomic analysis reveals the dynamic association of proteins with translated mRNAs in Trypanosoma cruzi. Gene. 2010;452:72–8.
Article
CAS
PubMed
Google Scholar
Keene JD. RNA regulons: coordination of post-transcriptional events. Nat Rev Genet. 2007;8:533–43. https://doi.org/10.1038/nrg2111.
Article
CAS
PubMed
Google Scholar
Cléry A, Blatter M, Allain FH. RNA recognition motifs: boring? Not quite. Curr Opin Struct Biol. 2008;18:290–8. https://doi.org/10.1016/j.sbi.2008.04.002.
Article
CAS
PubMed
Google Scholar
Dreyfuss G, Kim VN, Kataoka N. Messenger-RNA-binding proteins and the messages they carry. Nat Rev Mol Cell Biol. 2002;3:195–205.
Article
CAS
PubMed
Google Scholar
Kolev NG, Ullu E, Tschudi C. The emerging role of RNA-binding proteins in the life cycle of Trypanosoma brucei. Cell Microbiol. 2014;16:482–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oliveira C, Carvalho PC, Alves LR, Goldenberg S. The role of the trypanosoma cruzi TcNRBD1 protein in translation. PLoS One. 2016;11:e0164650.
Article
PubMed
PubMed Central
Google Scholar
Oliveira C, Faoro H, Alves LR, Goldenberg S. RNA-binding proteins and their role in the regulation of gene expression in trypanosoma cruzi and saccharomyces cerevisiae. Genet Mol Biol. 2017;40:22–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tyler Weisbarth R, Das A, Castellano P, Fisher MA, Wu H, Bellofatto V. The Trypanosoma cruzi RNA-binding protein RBP42 is expressed in the cytoplasm throughout the life cycle of the parasite. Parasitol Res. 2018;117:1095–104.
Article
CAS
PubMed
Google Scholar
D’Orso I, Frasch ACC. TcUBP-1, an mRNA destabilizing factor from trypanosomes, homodimerizes and interacts with novel AU-rich element- and poly(a)-binding proteins forming a ribonucleoprotein complex. J Biol Chem. 2002;277:50520–8.
Article
PubMed
Google Scholar
Noé G, De Gaudenzi JG, Frasch AC. Functionally related transcripts have common RNA motifs for specific RNA-binding proteins in trypanosomes. BMC Mol Biol. 2008;9:107.
Article
PubMed
PubMed Central
Google Scholar
Holetz FB, Alves LR, Probst CM, Dallagiovanna B, Marchini FK, Manque P, et al. Protein and mRNA content of TcDHH1-containing mRNPs in Trypanosoma cruzi. FEBS J. 2010;277:3415–26.
Article
CAS
PubMed
Google Scholar
Wippel HH, Inoue AH, Vidal NM, Costa JFD, Marcon BH, BAA R, et al. Assessing the partners of the RBP9-mRNP complex in Trypanosoma cruzi using shotgun proteomics and RNA-seq. RNA Biol. 2018;15(8):1106–18.
Wippel HH, Malgarin JS, Martins SDT, Vidal NM, Marcon BH, Miot HT, et al. The Nuclear RNA-binding Protein RBSR1 Interactome in Trypanosoma cruzi. J Eukaryot Microbiol. 2018;66(2):244–53.
Article
PubMed
Google Scholar
Das A, Bellofatto V, Rosenfeld J, Carrington M, Romero-Zaliz R, Del Val C, et al. High throughput sequencing analysis of Trypanosoma brucei DRBD3/PTB1-bound mRNAs. Mol Biochem Parasitol. 2015;199:1–4. https://doi.org/10.1016/j.molbiopara.2015.02.003.
Article
CAS
PubMed
Google Scholar
Clayton C. The regulation of trypanosome gene expression by RNA-binding proteins. PLoS Pathog. 2013;9(11):e1003680.
Article
PubMed
PubMed Central
Google Scholar
Mani J, Güttinger A, Schimanski B, Heller M, Acosta-Serrano A, Pescher P, et al. Alba-domain proteins of Trypanosoma brucei are cytoplasmic RNA-binding proteins that interact with the translation machinery. PLoS One. 2011;6:e22463. https://doi.org/10.1371/journal.pone.0022463.
Article
CAS
PubMed
PubMed Central
Google Scholar
Subota I, Rotureau B, Blisnick T, Ngwabyt S, Durand-Dubief M, Engstler M, et al. ALBA proteins are stage regulated during trypanosome development in the tsetse fly and participate in differentiation. Mol Biol Cell. 2011;22:4205–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dupé A, Dumas C, Papadopoulou B. Differential subcellular localization of Leishmania Alba-domain proteins throughout the parasite development. PLoS One. 2015;10:e0137243.
Article
PubMed
PubMed Central
Google Scholar
Hackmann A, Wu H, Schneider U-M, Meyer K, Jung K, Krebber H. Quality control of spliced mRNAs requires the shuttling SR proteins Gbp2 and Hrb1. Nat Commun. 2014;5:3123.
Lueong S, Merce C, Fischer B, Hoheisel JD, Erben ED. Gene expression regulatory networks in T rypanosoma brucei : insights into the role of the mRNA-binding proteome: gene expression regulatory networks in Trypanosoma brucei. Mol Microbiol. 2016;100:457–71.
Article
CAS
PubMed
Google Scholar
Fernández-Moya SM, García-Pérez A, Kramer S, Carrington M, Estévez AM. Alterations in DRBD3 ribonucleoprotein complexes in response to stress in Trypanosoma brucei. PLoS One. 2012;7:e48870. https://doi.org/10.1371/journal.pone.0048870.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anderson P, Kedersha N. RNA granules. J Cell Biol. 2006;172:803–8. https://doi.org/10.1083/jcb.200512082.
Article
CAS
PubMed
PubMed Central
Google Scholar
Windgassen M, Krebber H. Identification of Gbp2 as a novel poly(a)+ RNA-binding protein involved in the cytoplasmic delivery of messenger RNAs in yeast. EMBO Rep. 2003;4:278–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Windgassen M, Sturm D, Cajigas IJ, Gonzalez CI, Seedorf M, Bastians H, et al. Yeast shuttling SR proteins Npl3p, Gbp2p, and Hrb1p are part of the translating mRNPs, and Npl3p can function as a translational repressor. Mol Cell Biol. 2004;24:10479–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nardozzi JD, Lott K, Cingolani G. Phosphorylation meets nuclear import: a review. Cell Commun Signal. 2010;8:32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marchini FK, de Godoy LMF, Rampazzo RCP, Pavoni DP, Probst CM, Gnad F, et al. Profiling the Trypanosoma cruzi Phosphoproteome. PLoS One. 2011;6:e25381.
Article
CAS
PubMed
PubMed Central
Google Scholar
Belew AT, Junqueira C, Rodrigues-Luiz GF, Valente BM, Oliveira AER, Polidoro RB, et al. Comparative transcriptome profiling of virulent and non-virulent Trypanosoma cruzi underlines the role of surface proteins during infection. PLoS Pathog. 2017;13:e1006767.
Article
PubMed
PubMed Central
Google Scholar
Li Y, Shah-Simpson S, Okrah K, Belew AT, Choi J, Caradonna KL, et al. Transcriptome remodeling in Trypanosoma cruzi and human cells during intracellular infection. PLoS Pathog. 2016;12:1005511.
Article
PubMed
PubMed Central
Google Scholar
Smircich P, Eastman G, Bispo S, Duhagon MA, Guerra-Slompo EP, Garat B, et al. Ribosome profiling reveals translation control as a key mechanism generating differential gene expression in Trypanosoma cruzi. BMC Genomics. 2015;16:443.
Contreras VT, Araujo-Jorge TC, Bonaldo MC, Thomaz N, Barbosa HS, Meirelles MN, et al. Biological aspects of the Dm 28c clone of Trypanosoma cruzi after metacyclogenesis in chemically defined media. Mem Inst Oswaldo Cruz. 1988;83:123–33.
Article
CAS
PubMed
Google Scholar
Mitchell SF, Jain S, She M, Parker R. Global analysis of yeast mRNPs. Nat Struct Mol Biol. 2013;20:127–33.
Article
CAS
PubMed
Google Scholar
Buchan JR, Muhlrad D, Parker R. P bodies promote stress granule assembly in Saccharomyces cerevisiae. J Cell Biol. 2008;183:441–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alves LR, Goldenberg S. RNA-binding proteins related to stress response and differentiation in protozoa. World J Biol Chem. 2016;7:78–87. https://doi.org/10.4331/wjbc.v7.i1.78.
Article
PubMed
PubMed Central
Google Scholar
Padmanabhan PK, Samant M, Cloutier S, Simard MJ, Papadopoulou B. Apoptosis-like programmed cell death induces antisense ribosomal RNA (rRNA) fragmentation and rRNA degradation in Leishmania. Cell Death Differ. 2012;19(12): 1972–82.
Article
CAS
Google Scholar
Kramer S, Bannerman-Chukualim B, Ellis L, Boulden EA, Kelly S, Field MC, et al. Differential localization of the two T. brucei poly(a) binding proteins to the nucleus and RNP granules suggests binding to distinct mRNA pools. PLoS One. 2013;8:e54004. https://doi.org/10.1371/journal.pone.0054004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zoltner M, Krienitz N, Field MC, Kramer S. Comparative proteomics of the two T. brucei PABPs suggests that PABP2 controls bulk mRNA. PLoS Negl Trop Dis. 2018;12:e0006679.
Article
PubMed
PubMed Central
Google Scholar
Alves LR, Oliveira C, Goldenberg S. Eukaryotic translation elongation factor-1 alpha is associated with a specific subset of mRNAs in Trypanosoma cruzi. BMC Microbiol. 2015;15:104.
Murray JW, Edmonds BT, Liu G, Condeelis J. Bundling of actin filaments by elongation factor 1 alpha inhibits polymerization at filament ends. J Cell Biol. 1996;135:1309–21 http://www.ncbi.nlm.nih.gov/pubmed/8947553.
Article
CAS
PubMed
Google Scholar
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ward N, Moreno-Hagelsieb G. Quickly finding Orthologs as reciprocal best hits with BLAT, LAST, and UBLAST: how much do we miss? PLoS One. 2014;9:e101850.
Article
PubMed
PubMed Central
Google Scholar
Blom N, Gammeltoft S, Brunak S. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol. 1999;294:1351–62.
Article
CAS
PubMed
Google Scholar
Buchan DWA, Minneci F, Nugent TCO, Bryson K, Jones DT. Scalable web services for the PSIPRED protein analysis workbench. Nucleic Acids Res. 2013;41(Web Server issue):W349–57.
Article
PubMed
PubMed Central
Google Scholar
Contreras VT, Salles JM, Thomas N, Morel CM, Goldenberg S. In vitro differentiation of Trypanosoma cruzi under chemically defined conditions. Mol Biochem Parasitol. 1985;16:315–27.
Article
CAS
PubMed
Google Scholar
Batista M, Marchini FK, Celedon PA, Fragoso SP, Probst CM, Preti H, et al. A high-throughput cloning system for reverse genetics in Trypanosoma cruzi. BMC Microbiol. 2010;10:259. https://doi.org/10.1186/1471-2180-10-259.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu HY, Buck GA. Expression of an exogenous gene in Trypanosoma cruzi epimastigotes. Mol Biochem Parasitol. 1991;44:109–14.
Article
CAS
PubMed
Google Scholar
Inoue AH, Serpeloni M, Hiraiwa PM, Yamada-Ogatta SF, Muniz JRC, Motta MCM, et al. Identification of a novel nucleocytoplasmic shuttling RNA helicase of trypanosomes. PLoS One. 2014;9:e109521.
Article
PubMed
PubMed Central
Google Scholar
Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979;76:4350–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holetz FB, Correa A, Avila AR, Nakamura CV, Krieger MA, Goldenberg S. Evidence of P-body-like structures in Trypanosoma cruzi. Biochem Biophys Res Commun. 2007;356:1062–7. https://doi.org/10.1016/j.bbrc.2007.03.104.
Article
CAS
PubMed
Google Scholar
Chassé H, Boulben S, Costache V, Cormier P, Morales J. Analysis of translation using polysome profiling. Nucleic Acids Res. 2017;45(3):e15.
Chevallet M, Luche S, Rabilloud T. Silver staining of proteins in polyacrylamide gels. Nat Protoc. 2006;1:1852–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carvalho PC, Lima DB, Leprevost FV, Santos MDM, Fischer JSG, Aquino PF, et al. Integrated analysis of shotgun proteomic data with PatternLab for proteomics 4.0. Nat Protoc. 2015;11:102–17.
Article
PubMed
PubMed Central
Google Scholar
Eng JK, Jahan TA, Hoopmann MR. Comet: an open-source MS/MS sequence database search tool. Proteomics. 2013;13:22–4.
Article
CAS
PubMed
Google Scholar
Carvalho PC, Fischer JSG, Xu T, Cociorva D, Balbuena TS, Valente RH, et al. Search engine processor: filtering and organizing peptide spectrum matches. Proteomics. 2012;12:944–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57:289–300.
Google Scholar
Carvalho PC, Yates JR, Barbosa VC. Improving the TFold test for differential shotgun proteomics. Bioinformatics. 2012;28:1652–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baggerly KA, Deng L, Morris JS, Aldaz CM. Differential expression in SAGE: accounting for normal between-library variation. Bioinformatics. 2003;19:1477–83 http://www.ncbi.nlm.nih.gov/pubmed/12912827.
Article
CAS
PubMed
Google Scholar