Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev. 2001;65(2):232–60.
CAS
PubMed
PubMed Central
Google Scholar
Roberts M. Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution. FEMS Microbiol Rev. 1996;19(1):1–24.
CAS
PubMed
Google Scholar
Griffin MO, Fricovsky E, Ceballos G, Villarreal F. Tetracyclines: a pleitropic family of compounds with promising therapeutic properties. Review of the literature. Am J Physiol Cell Physiol. 2010;299(3):C539–48.
CAS
PubMed
PubMed Central
Google Scholar
Thaker M, Spanogiannopoulos P, Wright GD. The tetracycline resistome. Cell Mol Life Sci. 2010;67(3):419–31.
CAS
PubMed
Google Scholar
Taylor DE, Chau A. Tetracycline resistance mediated by ribosomal protection. Antimicrob Agents Chemother. 1996;40(1):1–5.
CAS
PubMed
PubMed Central
Google Scholar
Sloan J, McMurry LM, Lyras D, Levy SB, Rood JI. The Clostridium perfringens Tet P determinant comprises two overlapping genes: tetA(P), which mediates active tetracycline efflux, and tetB(P), which is related to the ribosomal protection family of tetracycline-resistance determinants. Mol Microbiol. 1994;11(2):403–15.
CAS
PubMed
Google Scholar
WHO. Critically important antimicrobials for human medicine : ranking of antimicrobial agents for risk management of antimicrobial resistance due to non-human use. In: Advisory Group on Integrated Surveillance of Antimicrobial Resistance; 2017.
Google Scholar
Sloan B, Scheinfeld N. The use and safety of doxycycline hyclate and other second-generation tetracyclines. Expert Opin Drug Saf. 2008;7(5):571–7.
CAS
PubMed
Google Scholar
Vidor C, Awad M, Lyras D. Antibiotic resistance, virulence factors and genetics of Clostridium sordellii. Res Microbiol. 2015;166(4):368–74.
CAS
PubMed
Google Scholar
Aldape MJ, Bryant AE, Stevens DL. Clostridium sordellii infection: epidemiology, clinical findings, and current perspectives on diagnosis and treatment. Clin Infect Dis. 2006;43(11):1436–46.
CAS
PubMed
Google Scholar
Aronoff DM, Hao Y, Chung J, Coleman N, Lewis C, Peres CM, Serezani CH, Chen GH, Flamand N, Brock TG, et al. Misoprostol impairs female reproductive tract innate immunity against Clostridium sordellii. J Immunol. 2008;180(12):8222–30.
CAS
PubMed
PubMed Central
Google Scholar
Fischer M, Bhatnagar J, Guarner J, Reagan S, Hacker JK, Van Meter SH, Poukens V, Whiteman DB, Iton A, Cheung M, et al. Fatal toxic shock syndrome associated with Clostridium sordellii after medical abortion. N Engl J Med. 2005;353(22):2352–60.
CAS
PubMed
Google Scholar
Lee E, Sheth C, Estrada O, Eshaghian P. A classic case of toxic shock syndrome due to a not so classic organism, Clostridium sordellii. Chest. 2017;152(4, Supplement):A257.
Google Scholar
Sasaki Y, Yamamoto K, Tamura Y, Takahashi T. Tetracycline-resistance genes of Clostridium perfringens, Clostridium septicum and Clostridium sordellii isolated from cattle affected with malignant edema. Vet Microbiol. 2001;83(1):61–9.
CAS
PubMed
Google Scholar
Brazier JS, Levett PN, Stannard AJ. Antibiotic susceptibility of clinical isolates of clostridia. J Antimicrob Chemother. 1985;15(2):181–5.
CAS
PubMed
Google Scholar
Knight DR, Squire MM, Collins DA, Riley TV. Genome analysis of Clostridium difficile PCR Ribotype 014 lineage in Australian pigs and humans reveals a diverse genetic repertoire and signatures of long-range interspecies transmission. Front Microbiol. 2017;7(1):2138.
Abraham LJ, Rood JI. Molecular analysis of transferable tetracycline resistance plasmids from Clostridium perfringens. J Bacteriol. 1985;161(2):636–40.
CAS
PubMed
PubMed Central
Google Scholar
Bannam TL, Yan X-X, Harrison PF, Seemann T, Keyburn AL, Stubenrauch C, Weeramantri LH, Cheung JK, McClane BA, Boyce JD, et al. Necrotic enteritis-derived Clostridium perfringens strain with three closely related independently conjugative toxin and antibiotic resistance plasmids. mBio. 2011;2(5):e00190–11.
PubMed
PubMed Central
Google Scholar
Johanesen PA, Lyras D, Rood JI. Induction of pCW3-encoded tetracycline resistance in Clostridium perfringens involves a host-encoded factor. Plasmid. 2001;46(3):229–32.
CAS
PubMed
Google Scholar
Bannam TL, Teng WL, Bulach D, Lyras D, Rood JI. Functional identification of conjugation and replication regions of the tetracycline resistance plasmid pCW3 from Clostridium perfringens. J Bacteriol. 2006;188(13):4942–51.
CAS
PubMed
PubMed Central
Google Scholar
Couchman EC, Browne HP, Dunn M, Lawley TD, Songer JG, Hall V, Petrovska L, Vidor C, Awad M, Lyras D, et al. Clostridium sordellii genome analysis reveals plasmid localized toxin genes encoded within pathogenicity loci. BMC Genomics. 2015;16(1):392.
PubMed
PubMed Central
Google Scholar
Chong E, Winikoff B, Charles D, Agnew K, Prentice JL, Limbago BM, Platais I, Louie K, Jones HE, Shannon C. Vaginal and rectal Clostridium sordellii and Clostridium perfringens presence among women in the United States. Obstet Gynecol. 2016;127(2):360–8.
PubMed
PubMed Central
Google Scholar
Johanesen PA, Lyras D, Bannam TL, Rood JI. Transcriptional analysis of the tet(P) operon from Clostridium perfringens. J Bacteriol. 2001;183(24):7110–9.
CAS
PubMed
PubMed Central
Google Scholar
Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, He J, Gwadz M, Hurwitz DI, et al. CDD: NCBI's conserved domain database. Nucleic Acids Res. 2015;43(Database issue):D222–6.
CAS
PubMed
Google Scholar
Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protocols. 2015;10(6):845–58.
CAS
PubMed
Google Scholar
Garnier T, Cole ST. Identification and molecular genetic analysis of replication functions of the bacteriocinogenic plasmid pIP404 from Clostridium perfringens. Plasmid. 1988;19(2):151–60.
CAS
PubMed
Google Scholar
Rood JI, Cole ST. Molecular genetics and pathogenesis of Clostridium perfringens. Microbiol Rev. 1991;55(4):621–48.
CAS
PubMed
PubMed Central
Google Scholar
Garcillán-Barcia MP, Francia MV, De La Cruz F. The diversity of conjugative relaxases and its application in plasmid classification. FEMS Microbiol Rev. 2009;33(3):657–87.
PubMed
Google Scholar
Riedel T, Bunk B, Thürmer A, Spröer C, Brzuszkiewicz E, Abt B, Gronow S, Liesegang H, Daniel R, Overmann J. Genome resequencing of the virulent and multidrug-resistant reference strain Clostridium difficile 630. Genome Announcements. 2015;3(2):e00276–15.
Frost LS, Leplae R, Summers AO, Toussaint A. Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol. 2005;3:722.
CAS
PubMed
Google Scholar
Rocha EPC, Cornet E, Michel B. Comparative and evolutionary analysis of the bacterial homologous recombination systems. PLoS Genet. 2005;1(2):e15.
PubMed
PubMed Central
Google Scholar
CLSI. Methods for antimicrobial susceptibility testing of anaerobic bacteria; approved standard - seventh edition. CLSI document M11-A7. Wayne, PA, USA: Clinical and Laboratory Standards Institute; 2012.
Howden BP, Davies JK, Johnson PDR, Stinear TP, Grayson ML. Reduced vancomycin susceptibility in Staphylococcus aureus, including vancomycin-intermediate and heterogeneous vancomycin-intermediate strains: resistance mechanisms, laboratory detection, and clinical implications. Clin Microbiol Rev. 2010;23(1):99–139.
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Li X, Jiang L, Han W, Xie X, Jin Y, He X, Wu R. Novel mutation sites in the development of vancomycin- intermediate resistance in Staphylococcus aureus. Front Microbiol. 2017;7(1):2163.
Khanna S. Do tetracyclines have the potential to reduce the risk of Clostridium difficile infection? Expert Rev Anti Infect Ther. 2018:16(3):183–185.
Doernberg SB, Winston LG, Deck DH, Chambers HF. Does doxycycline protect against development of Clostridium difficile infection? Clin Infect Dis. 2012;55(5):615–20.
CAS
PubMed
PubMed Central
Google Scholar
Huang H, Weintraub A, Fang H, Nord CE. Antimicrobial resistance in Clostridium difficile. Int J Antimicrob Agents. 2009;34(6):516–22.
CAS
PubMed
Google Scholar
Wiegand I, Hilpert K, Hancock REW. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protocols. 2008;3(2):163–75.
CAS
PubMed
Google Scholar
Vidor CJ, Watts TD, Adams V, Bulach D, Couchman E, Rood JI, Fairweather NF, Awad M, Lyras D. Clostridium sordellii pathogenicity locus plasmid pCS1-1 encodes a novel Clostridial conjugation locus. mBio. 2018;9(1):e01761–17.
Wisniewski JA, Teng WL, Bannam TL, Rood JI. Two novel membrane proteins, TcpD and TcpE, are essential for conjugative transfer of pCW3 in Clostridium perfringens. J Bacteriol. 2015;197(4):774–81.
PubMed
PubMed Central
Google Scholar
Rood JI. Transferable tetracycline resistance in Clostridium perfringens strains of porcine origin. Can J Microbiol. 1983;29(10):1241–6.
CAS
PubMed
Google Scholar
Rood JI, Maher EA, Somers EB, Campos E, Duncan CL. Isolation and characterization of multiply antibiotic-resistant Clostridium perfringens strains from porcine feces. Antimicrob Agents Chemother. 1978;13(5):871–80.
CAS
PubMed
PubMed Central
Google Scholar
Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics. 2011;27(7):1009–10.
CAS
PubMed
PubMed Central
Google Scholar
McWilliam H, Li W, Uludag M, Squizzato S, Park YM, Buso N, Cowley AP, Lopez R. Analysis tool web services from the EMBL-EBI. Nucleic Acids Res. 2013;41(Web Server issue):W597–600.
PubMed
PubMed Central
Google Scholar
Nullarbor [https://github.com/tseemann/nullarbor]. Accessed 25 May 2018.
Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res. 2016;44(D1):D67–72.
CAS
PubMed
Google Scholar
Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31(10):1674–6.
CAS
PubMed
Google Scholar
Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068–9.
CAS
PubMed
Google Scholar
Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, Barrell B. Artemis: sequence visualization and annotation. Bioinformatics. 2000;16(10):944–5.
CAS
PubMed
Google Scholar