Haware MP. Assessment of losses due to early blight (Alternaria solani) of potato. Mycopathol Mycol Appl. 1971;43(3):341–2.
Article
CAS
Google Scholar
Brian PW, Curtis PJ, Hemming HG, Wright JM. Alternaric acid, a biologically active metabolic product of the fungus Alternaria solani. Nature. 1949;164(4169):534.
Article
CAS
Google Scholar
Brian PW, Curtis PJ, Hemming HG, Jefferys EG, Wright JM. Alternaric acid; a biologically active metabolic product of Alternaria solani (Ell. & Mart.) Jones & Grout; its production, isolation and antifungal properties. J Gen Microbiol. 1951;5(4):619–32.
Article
CAS
Google Scholar
GamboaAngulo MM, AlejosGonzalez F, PenaRodriguez LM. Homozinniol, a new phytotoxic metabolite from Alternaria solani. J Agric Food Chem. 1997;45(1):282–5.
Article
CAS
Google Scholar
Moreno-Escobar J, Puc-Carrillo A, Caceres-Farfan M, Pena-Rodriquez LM, Gamboa-Angulo MM. Two new zinniol-related phytotoxins from Alternaria solani. Nat Prod Res. 2005;19(6):603–7.
Article
CAS
Google Scholar
Ai HL, Zhang LM, Chen YP, Zi SH, Xiang H, Zhao DK, Shen Y. Two new compounds from an endophytic fungus Alternaria solani. J Asian Nat Prod Res. 2012;14(12):1144–8.
Article
CAS
Google Scholar
Andersen B, Dongo A, Pryor BM. Secondary metabolite profiling of Alternaria dauci, A. porri, A. solani, and A. tomatophila. Mycol Res. 2008;112:241–50.
Article
CAS
Google Scholar
Prasad B, Dutt BL. Inducing sporulation in Alternaria solani. II. Effect of light. Mycopathol Mycol Appl. 1974;54(1):47–54.
Article
CAS
Google Scholar
Prasad B, Dutt BL, Nagaich BB. Inducing sporulation in Alternaria solani. I. Effect of water treatment. Mycopathol Mycol Appl. 1973;49(2):141–6.
Article
CAS
Google Scholar
Rich S, Tomlinson H. Effects of ozone on conidiophores and conidia of alternaria solani. Phytopathology. 1968;58(4):444–6.
CAS
PubMed
Google Scholar
Singh BM. Inducing sporulation in different strains of Alternaria solani. II. Effect of ultraviolet light. Mycopathol Mycol Appl. 1967;32(2):163–71.
Article
CAS
Google Scholar
Leiminger JH, Auinger HJ, Wenig M, Bahnweg G, Hausladen H. Genetic variability among Alternaria solani isolates from potatoes in southern Germany based on RAPD-profiles. J Plant Dis Protect. 2013;120(4):164–72.
Article
CAS
Google Scholar
Lourenco V, Rodrigues TTM, Campos AMD, Braganca CAD, Scheuermann KK, Reis A, Brommonschenkel SH, Maffia LA, Mizubuti ESG. Genetic structure of the population of Alternaria solani in Brazil. J Phytopathol. 2011;159(4):233–40.
Article
Google Scholar
Tymon L, Cummings TF, Johnson DA. Pathogenicity and aggressiveness of Alternaria solani, A. alternata, and A. triticina on potato. Phytopathology. 2013;103(6):149–50.
Google Scholar
van der Waals JE, Korsten L, Slippers B. Genetic diversity among Alternaria solani isolates from potatoes in South Africa. Plant Dis. 2004;88(9):959–64.
Article
Google Scholar
Varma PK, Singh H, Gandhi SK, Chaudhary K. Variability among Alternaria solani isolates associated with early blight of tomato. Commun Agric Appl Biol Sci. 2006;71(4):37–46.
CAS
PubMed
Google Scholar
Weber B, Halterman DA. Analysis of genetic and pathogenic variation of Alternaria solani from a potato production region. Eur J Plant Pathol. 2012;134(4):847–58.
Article
Google Scholar
Park HS, Yu JH. Genetic control of asexual sporulation in filamentous fungi. Curr Opin Microbiol. 2012;15(6):669–77.
Article
CAS
Google Scholar
Bahn YS, Xue H, Idnum A, Rutherford JC, Heitman J, Cardenas ME. Sensing the environment: lessons from fungi. Nat Rev Microbiol. 2007;5:57–69.
Article
CAS
Google Scholar
Etxebeste O, Garzia A, Espeso EA, Uqalde U. Aspergillus nidulans asexual development: making the most of cellular modules. Trends Microbiol. 2010;17(12):569–72.
Article
Google Scholar
Son H, Kim MG, Min K, Seo YS, Lim JY, Choi GJ, Kim JC, Chae SK, Lee YW. AbaA regulates conidiogenesis in the ascomycete fungus Fusarium graminearum. PLoS One. 2013;8(9):e72915.
Article
CAS
Google Scholar
Adams T, Boylan MT, Timberlake WE. BrlA is necessary and sufficient to direct conidiophore development in Aspergillus nidulans. Cell. 1988;54(3):353–62.
Article
CAS
Google Scholar
Ruger-Herreros C, Rodríguez-Romero J, Fernández-Barranco R, Olmedo M, Fischer R, Corrochano LM, Canovas D. Regulation of conididation by light in Aspergillus nidulans. Genetics. 2011;188(4):809–22.
Article
CAS
Google Scholar
Mirabito PM, Adams TH, Timberlake WE. Interactions of three sequentially expressed genes control temporal and spatial specificity in aspergillus development. Cell. 1989;57(5):859–68.
Article
CAS
Google Scholar
Sewall TC, Mims CW, Timberlake WE. Conidium differentiation in Aspergillus nidulans wild-type and wet-white (wetA) mutant strains. Dev Biol. 1990;138(2):499–508.
Article
CAS
Google Scholar
Marshall MA, Timberlake WE. Aspergillus nidulans wetA activates spore-specific gene expression. Mol Cell Biol. 1991;11(1):55–62.
Article
CAS
Google Scholar
Wieser J, Lee BN, Fondon JW, Adams TH. Genetic requirements for initiating asexual development in Aspergillus nidulans. Curr Genet. 1994;27(1):62–9.
Article
CAS
Google Scholar
Wu J, Miller BL. Aspergillus asexual reproduction and sexual reproduction are differentially affected by transcriptional and translational mechanisms regulating stunted gene expression. Mol Cell Biol. 1997;17(10):6191–201.
Article
CAS
Google Scholar
Miller KY, Wu J, Miller BL. StuA is required for cell pattern formation in aspergillus. Genes Dev. 1992;6(9):1770–82.
Article
CAS
Google Scholar
Dang HX, Pryor B, Peever T, Lawrenc CB. The Alternaria genomes database: a comprehensive resource for a fungal genus comprised of saprophytes, plant pathogens, and allergenic species. BMC Genomics. 2015;16:239–50.
Article
Google Scholar
Woudenberg JHC, Seidl MF, Groenewald JZ, de Vries M, Stielow JB, Thomma BPHJ, Crous PW. Alternaria section Alternaria: species, formae speciales or pathotypes? Stud Mycol. 2015;82:1–21.
Article
CAS
Google Scholar
Wolters PJ, Faino L, van den Bosch TBM, Evenhuis B, Visser RGF, Seidl MF, Vleeshouwers VGAA. Gapless genome assembly of the potato and tomato early blight pathogen Alternaria solani. Mol Plant-Microbe Interact. 2018;31(7):692–4.
Article
CAS
Google Scholar
Huang K, Zhong Y, Li Y, Zheng D, Cheng ZM. Genome-wide identification and expression analysis of the apple ASR gene family in response to Alternaria alternata f. sp mali. Genome. 2016;59(10):866–78.
Article
CAS
Google Scholar
Bihon W, Cloete M, Gerrano AS, Oelofse D, Adebola P. Draft genome sequence of Alternaria alternata isolated from onion leaves in South Africa. Genome Announc. 2016;4(5):1022–16.
Article
Google Scholar
Nguyen HD, Lewis CT, Levesque CA, Grafenhan T. Draft genome sequence of Alternaria alternata ATCC 34957. Genome Announc. 2016;4(1):1554–15.
Article
Google Scholar
Wang M, Sun X, Yu D, Xu J, Chung K, Li H. Genomic and transcriptomic analyses of the tangerine pathotype of Alternaria alternata in response to oxidative stress. Sci Rep. 2016;6(1):1–11.
Lightfood DJ, Mcgrann GR, Able AJ. The role of cytosolic superoxide dismutase in barley-pathogen interactions. Mol Plant Pathol. 2017;18(3):323–35.
Article
Google Scholar
Lu F, Liang X, Lu H, Li Q, chen Q, Zhang P, Li K, Liu G, Yan W, Song J, Duan C, Zhang L. Overproduction of superoxide dismutase and catalase confers cassava resistance to Tetranychus cinnabarinus. Sci Rep. 2017;7:40179.
Article
CAS
Google Scholar
Marti M, Good RT, Rug M, Knuepfer E, Cowman AF. Targeting malaria virulence and remodeling proteins to the host erythrocyte. Science. 2004;10:1930–3.
Article
Google Scholar
Emri T, Molnar Z, Pusztahelyi T, Varecza Z, Pocsi I. The fluG-BrlA pathway contributes to the initialisation of autolysis in submerged Aspergillus nidulans cultures. Mycol Re. 2005;109:757–63.
Article
CAS
Google Scholar
Rodrigues TTMS, Maffia LA, Dhingra OD, Mizubuti ESG. In vitro production of conidia of Alternaria solani. Trop Plant Pathol. 2010;35(4):203–12.
Article
Google Scholar
Goatley JL. Production of exocellular polysaccharides by Alternaria solani. Can J Microbiol. 1968;14(10):1063–8.
Article
CAS
Google Scholar
Shahbazi H, Aminian H, Sahebani N, Halterman DA. Activity of beta-1,3-glucanase and beta-1,4-glucanase in two potato cultivars following challenge by the fungal pathogen Alternaria solani. Phytoparasitica. 2011;39(5):455–60.
Article
CAS
Google Scholar
Cho Y, Jang M, Srivastava A, Jang JH, Soung NK, Ko SK, Kang DO, Ahn JS, Kim BY. A pectate lyase-coding gene abundantly expressed during early stages of infection is required for full virulence in Alternaria brassicicola. PLoS One. 2015;10(5):e0127140.
Article
Google Scholar
Kemen E, Kemen AC, Rafigi M, Hempel U, Mendgen K, Hahn K, Hahn M, Voegele RT. Identification of a protein from rust fungi transferred from haustoria into infected plant cells. Mol Plant-Microbe Interact. 2005;18(11):1130–9.
Article
CAS
Google Scholar
Dodds PN, Lawrence G, Catanzariti AM, Ayliffe MA, Ellis JG. The Melampsora lini AvrL567 avirulence genes are expressed in haustoria and their products are recognized inside plant cells. Plant Cell. 2004;16(3):755–68.
Article
CAS
Google Scholar
Birch PRJ, Rehmany AP, Pritchard L, Kamoun S, Beynon JL. Trafficking arms: oomycete effectors enter host plant cells. Trends Microbiol. 2006;14(1):8–11.
Article
CAS
Google Scholar
Mendgen K, Hahn M. Plant infection and the establishment of fungal biotrophy. Trends Plant Sci. 2002;7(8):352–6.
Article
CAS
Google Scholar
Choi J, Park J, Kim D, Jung K, Kang S, Lee YH. Fungal Secretome database: integrated platform for annotation of fungal secretomes. BMC Genomics. 2010;11:105.
Article
Google Scholar
Storchova H, Hrdlickova R, Chrtek J, Tetera M, Fitze D, Fehrer J. An improved method of DNA isolation from plants collected in the field and conserved in saturated NaCl/CTAB solution. Taxon. 2000;49(1):79–84.
Article
Google Scholar
Cox MP, Peterson DA, Biggs PJ. SolexaQA: at-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinformatics. 2010;11:485.
Article
Google Scholar
Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, Tang J, Wu G, Zhang H, Shi Y, Liu Y, Yu C, Wang B, Lu Y, Han C, Cheung DW, Yiu SM, Peng S, Xiaoqian Z, Liu G, Liao X, Li Y, Yang H, Wang J, Lam TW, Wang J. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience. 2012;1(1):18.
Article
Google Scholar
Stanke M, Tzvetkova A, Morgenstern B. AUGUSTUS at EGASP: using EST, protein and genomic alignments for improved gene prediction in the human genome. Genome Biol. 2006;7:11.
Article
Google Scholar
Angiuoli SV, Salzberg SL. Mugsy: fast multiple alignment of closely related whole genomes. Bioinformatics. 2011;27(3):334–42.
Article
CAS
Google Scholar
Fouts DE, Brinkac L, Beck E, Inman J, Sutton G. PanOCT: automated clustering of orthologs using conserved gene neighborhood for pan-genomic analysis of bacterial strains and closely related species. Nucleic Acids Res. 2012;40(22):e172.
Article
CAS
Google Scholar
Nelson CE, Hersh BM, Carroll SB. The regulatory content of intergenic DNA shapes genome architecture. Genome Biol. 2004;5(4):R25.
Article
Google Scholar
Haddadi P, Ma L, Wang H, Borhan MH. Genome-wide transcriptomic analyses provide insights into the lifestyle transition and effector repertoire of Leptosphaeria maculans during the colonization of Brassica napus seedlings. Mol Plant Pathol. 2016;17(8):1196–210.
Article
CAS
Google Scholar
Park BH, Karpinets TV, Syed MH, Leuze MR, Uberbacher EC. CAZymes analysis toolkit (CAT): web service for searching and analyzing carbohydrate-active enzymes in a newly sequenced organism using CAZy database. Glycobiology. 2010;20(12):1574–84.
Article
CAS
Google Scholar
Crook GE, Hon G, Chandonia JM, Brenner SE. WebLogo: A sequence Logo generator. Genome Res. 2004;14(6):1188–90.
Article
Google Scholar