Alfano JR, Collmer A. Type III secretion system effector proteins: double agents in bacterial disease and plant defense. Annu Rev Phytopathol. 2004;42:385–414.
Article
PubMed
CAS
Google Scholar
Büttner D. Protein export according to schedule: architecture, assembly, and regulation of type III secretion systems from plant- and animal-pathogenic bacteria. Microbiol Mol Biol Rev. 2012;76:262–310.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chatterjee S, Chaudhury S, McShan AC, Kaur K, De Guzman RN. Structure and biophysics of type III secretion in bacteria. Biochemistry. 2013;52:2508–17.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bogdanove AJ, Voytas DF. TAL effectors: customizable proteins for DNA targeting. Science. 2011;333:1843–6.
Article
PubMed
CAS
Google Scholar
Ji H, Dong H. Key steps in type III secretion system (T3SS) towards translocon assembly with potential sensor at plant plasma membrane. Mol Plant Pathol. 2015a;16:762–73.
Article
PubMed
CAS
Google Scholar
Espina M, Ausar SF, Middaugh CR, Picking WD, Picking WL. Spectroscopic and calorimetric analyses of invasion plasmid antigen D (IpaD) from Shigella flexneri reveal the presence of two structural domains. Biochemistry. 2006;45:9219–27.
Article
PubMed
CAS
Google Scholar
Mueller CA, Broz P, Cornelis GR. The type III secretion system tip complex and translocon. Mol Microbiol. 2008;68:1085–95.
Article
PubMed
CAS
Google Scholar
Kvitko BH, Ramos AR, Morello JE, Oh HS, Collmer A. Identification of harpins in Pseudomonas syringae pv. tomato DC3000, which are functionally similar to HrpK1 in promoting translocation of type III secretion system effectors. J Bacteriol. 2007;189:8059–72.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bocsanczy AM, Nissinen RM, Oh CS, Beer SV. HrpN of Erwinia amylovora functions in the translocation of DspA/E into plant cells. Mol Plant Pathol. 2008;9:425–34.
Article
PubMed
CAS
Google Scholar
Charkowski AO, Alfano JR, Preston G, Yuan J, He SY, Collmer A. The Pseudomonas syringae pv. tomato HrpW protein has domains similar to harpins and pectate lyases and can elicit the plant hypersensitive response and bind to pectate. J Bacteriol. 1998;180:5211–7. http://jb.asm.org/content/180/19/5211.long
PubMed
PubMed Central
CAS
Google Scholar
Kim JF, Beer SV. HrpW of Erwinia amylovora, a new harpin that contains a domain homologous to pectate lyases of a distinct class. J Bacteriol. 1998;180:5203–10. http://jb.asm.org/content/180/19/5203.long
PubMed
PubMed Central
CAS
Google Scholar
Choi MS, Kim W, Lee C, Oh CS. Harpins, multifunctional proteins secreted by gram-negative plant-pathogenic bacteria. Mol Plant-Microbe Interact. 2013;26:1115–22.
Article
PubMed
CAS
Google Scholar
Oh CS, Beer SV. AtHIPM, an ortholog of the apple HrpN-interacting protein, is a negative regulator of plant growth and mediates the growth-enhancing effect of HrpN in Arabidopsis. Plant Physiol. 2007;145:426–36.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li L, Wang H, Gago J, Cui H, Qian Z, Kodama N, Ji H, Tian S, Shen D, Chen Y, et al. Harpin Hpa1 interacts with aquaporin PIP1;4 to promote the substrate transport and photosynthesis in Arabidopsis. Sci Rep. 2015;5:17207.
Article
PubMed
PubMed Central
CAS
Google Scholar
Haapalainen M, Engelhardt S, Küfner I, Li CM, Nürnberger T, Lee J, Romantschuk M, Taira S. Functional mapping of harpin HrpZ of Pseudomonas syringae reveals the sites responsible for protein oligomerization, lipid interactions and plant defence induction. Mol Plant Pathol. 2011;12:151–66.
Article
PubMed
CAS
Google Scholar
Sang S, Li X, Gao R, You Z, Lü B, Liu P, Ma Q, Dong H. Apoplastic and cytoplasmic location of harpin protein Hpa1Xoo plays different roles in H2O2 generation and pathogen resistance in Arabidopsis. Plant Mol Biol. 2012;79:375–91.
Article
PubMed
CAS
Google Scholar
Zhu WG, MaGbanua MM, White FF. Identification of two novel hrp-associated genes in the hrp gene cluster of Xanthomonas oryzae pv. oryzae. J Bacteriol. 2000;182:1844–53.
Article
PubMed
PubMed Central
CAS
Google Scholar
White FF, Potnis N, Jones JB, Koebnik R. The type III effectors of Xanthomonas. Mol Plant Pathol. 2009;10:749–66.
Article
PubMed
CAS
Google Scholar
Bonas U, Stall RE, Stskawicz BJ. Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas campestris pv campestris. Mol Gen Genet. 1989;218:127–36.
Article
PubMed
CAS
Google Scholar
Boch J, Bonas U. Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol. 2010;48:419–36.
Article
PubMed
CAS
Google Scholar
Roden JA, Belt B, Ross JB, Tachibana T, Vargas J, Mudgett MB. A genetic screen to isolate type III effectors translocated into pepper cells during Xanthomonas infection. Proc Natl Acad Sci U S A. 2004;101:16624–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Büttner D, Nennstiel D, Klüsener B, Bonas U. Functional analysis of HrpF, a putative type III translocon protein from Xanthomonas campestris pv. vesicatoria. J Bacteriol. 2002;184:2389–98.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ji ZL, Song CF, Lu XZ, Wang JS. Two coiled-coil regions of Xanthomonas oryzae pv. oryzae harpin differ in oligomerization and hypersensitive response induction. Amino Acids. 2011;40:381–92.
Article
PubMed
CAS
Google Scholar
Wang XY, Song CF, Miao WG, Ji ZL, Wang X, Zhang Y, Zhang JH, Hu JS, Borth W, Wang JS. Mutations in the N-terminal coding region of the harpin protein Hpa1 from Xanthomonas oryzae cause loss of hypersensitive reaction induction in tobacco. Appl Microbiol Biotechnol. 2008;81:359–69.
Article
PubMed
CAS
Google Scholar
Li XJ, Zhao YY, You ZZ, Dong HS, Zhang CL. Harpin Hpa1 needs nitroxyl terminus to promote vegetative growth and leaf photosynthesis in Arabidopsis. J Biosci. 2014;39:127–37.
Article
PubMed
CAS
Google Scholar
Yang B, Sugio A, White FF. Os8N3 is a host disease-susceptibility gene for bacterial blight of rice. Proc Natl Acad Sci U S A. 2006;103:10503–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tian D, Wang J, Zeng X, Gu K, Qiu C, Yang X, Zhou Z, Goh M, Luo Y, Murata-Hori M, et al. The rice TAL effector–dependent resistance protein XA10 triggers cell death and calcium depletion in the endoplasmic reticulum. Plant Cell. 2014;26:497–515.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li YR, Che YZ, Zou HS, Cui YP, Guo W, Zou LF, Biddle EM, Yang CH, Chen GY. Hpa2 required by HrpF to translocate Xanthomonas oryzae transcriptional activator-like effectors into rice for pathogenicity. Appl Environ Microbiol. 2011;77:3809–18.
Article
PubMed
PubMed Central
CAS
Google Scholar
Makino S, Sugio A, White F, Bogdanove AJ. Inhibition of resistance gene-mediated defense in rice by Xanthomonas oryzae pv. oryzicola. Mol Plant-Microbe Interact. 2006;19:240–9.
Article
PubMed
CAS
Google Scholar
Tsuge S, Furutani A, Fukunaka R, Oku T, Tsuno K, Ochiai H, Inoue Y, Kaku H, Kubo Y. Expression of Xanthomonas oryzae pv. oryzae hrp genes in XOM2, a novel synthetic medium. J Gen Plant Pathol. 2002;68:363–71.
Article
CAS
Google Scholar
Shi LW. SPSS19.0 statistical analysis from accidence to conversance (in Chinese). Beijing: Tsinghua University Press; 2012. p. 109–43.
Google Scholar
Ge J, Li B, Shen D, Xie J, Long J, Dong H. Tobacco TTG2 regulates vegetative growth and seed production via the predominant role of ARF8 in cooperation with ARF17 and ARF19. BMC Plant Biol. 2016;16:126.
Article
PubMed
PubMed Central
CAS
Google Scholar
Eisenhart C. The assumptions underlying the analysis of variance. Biometrics. 1947;3(1):1–21.
Tian S, Wang X, Li P, Wang H, Ji H, Xie J, Qiu Q, Shen D, Dong H. Plant aquaporin AtPIP1;4 links apoplastic H2O2 induction to disease immunity pathways. Plant Physiol. 2016;171:1635–50.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhai Y, Ping Li P, Mei Y, Xiaochen Chen X, Xu H, Zhou X, Dong H, Zhang C, Jiang W. Three MYB genes coregulate the phloem-based defence against English grain aphid in wheat. J Exp Bot. 2017;68 https://doi.org/10.1093/jxb/erx204.
Sugio A, Yang B, White FF. Characterization of the hrpF pathogenicity peninsula of Xanthomonas oryzae pv. oryzae. Mol Plant-Microbe Interact. 2005;18:546–54.
Article
PubMed
CAS
Google Scholar
Hartmann N, Büttner D. The inner membrane protein HrcV from Xanthomonas spp. is involved in substrate docking during type III secretion. Mol Plant-Microbe Interact. 2013;26:1176–89.
Article
PubMed
CAS
Google Scholar
Noël L, Thieme F, Nennstiel D, Bonas U. Two novel type III-secreted proteins of Xanthomonas campestris pv. vesicatoria are encoded within the Hrp pathogenicity island. J Bacteriol. 2002;184:1340–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Huguet E, Bonas U. HrpF of Xanthomonas campestris pv. vesicatoria encodes an 87-kDa protein with homology to NolX of Rhizobium fredii. Mol Plant-Microbe Interact. 1997;10:488–98.
Article
PubMed
CAS
Google Scholar
Zhang JH, Wang XY, Zhang Y, Zhang GY, Wang JS. A conserved Hpa2 protein has lytic activity against the bacterial cell wall in phytopathogenic Xanthomonas oryzae. Appl Microbiol Biotechnol. 2008;79:605–16.
Article
PubMed
CAS
Google Scholar
Mushegian AR, Fullner KJ, Koonin EV, Nester EW. A family of lysozyme-like virulence factors in bacterial pathogens of plants and animals. Proc Natl Acad Sci U S A. 1996;93:7321–6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ward DV, Draper O, Zupan JR, Zambryski PC. Peptide linkage mapping of the Agrobacterium tumefaciens vir-encoded type IV secretion system reveals protein subassemblies. Proc Natl Acad Sci U S A. 2002;99:11493–500.
Article
PubMed
PubMed Central
CAS
Google Scholar
Koraimann G. Lytic transglycosylases in macromolecular transport systems of gram-negative bacteria. Cell Mol Life Sci. 2003;60:2371–88.
Article
PubMed
CAS
Google Scholar
Zahrl D, Wagner M, Bischof K, Bayer M, Zavecz B, Beranek A, Ruckenstuhl C, Zarfel GE, Koraimann G. Peptidoglycan degradation by specialized lytic transglycosylases associated with type III and type IV secretion systems. Microbiology. 2005;151:3455–67.
Article
PubMed
CAS
Google Scholar
Oh HS, Kvitko BH, Morello JE, Collmer A. Pseudomonas syringae lytic transglycosylases coregulated with the type III secretion system contribute to the translocation of effector proteins into plant cells. J Bacteriol. 2007;189:8277–89.
Article
PubMed
PubMed Central
CAS
Google Scholar