Donoghue DJ. Antibiotic residues in poultry tissues and eggs: human health concerns? Poult Sci. 2003;82(4):618–21.
Article
PubMed
CAS
Google Scholar
Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. P T. 2015;40(4):277–83.
PubMed
PubMed Central
Google Scholar
Mohanram H, Bhattacharjya S. Salt-resistant short antimicrobial peptides. Biopolymers. 2016;106(3):345–56.
Article
PubMed
CAS
Google Scholar
Straus SK, Hancock REW. Mode of action of the new antibiotic for gram-positive pathogens daptomycin: comparison with cationic antimicrobial peptides and lipopeptides. Biochim Biophys Acta Biomembr. 2006;1758(9):1215–23.
Article
CAS
Google Scholar
Jenssen H, Hamill P, Hancock RE. Peptide antimicrobial agents. Clin Microbiol Rev. 2006;19(3):491–511.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev. 2003;55(1):27–55.
Article
PubMed
CAS
Google Scholar
Ganz T. Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol. 2003;3(9):710–20.
Article
PubMed
CAS
Google Scholar
Bahar A, Ren D. Antimicrobial peptides. Pharmaceuticals. 2013;6(12):1543.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang G, Sunkara LT. Avian antimicrobial host defense peptides: from biology to therapeutic applications. Pharmaceuticals (Basel). 2014;7:220–47.
Article
CAS
Google Scholar
Greber KE, Dawgul M. Antimicrobial peptides under clinical trials. Curr Top Med Chem. 2017;17(5):620–8.
Article
PubMed
CAS
Google Scholar
Mahlapuu M, Håkansson J, Ringstad L, Björn C. Antimicrobial peptides: an emerging category of therapeutic agents. Front Cell Infect Microbiol. 2016;6:194.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhao L, Yang M, Zhang M, Zhang S. Expression, purification, and in vitro comparative characterization of avian beta-defensin-2, −6, and −12. Avian Dis. 2014;58(4):541–9.
Article
PubMed
CAS
Google Scholar
Yang M, Zhang C, Zhang MZ, Zhang S. Novel synthetic analogues of avian β-defensin-12: the role of charge, hydrophobicity, and disulfide bridges in biological functions. BMC Microbiol. 2017;17(1):43.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yang M, Zhang C, Zhang X, Zhang MZ, Rottinghaus GE, Zhang S. Structure-function analysis of avian beta-defensin-6 and beta-defensin-12: role of charge and disulfide bridges. BMC Microbiol. 2016;16:210.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mohamed MF, Abdelkhalek A, Seleem MN. Evaluation of short synthetic antimicrobial peptides for treatment of drug-resistant and intracellular Staphylococcus aureus. Sci Rep. 2016;6:29707.
Article
PubMed
PubMed Central
Google Scholar
Rozek A, Powers JP, Friedrich CL, Hancock RE. Structure-based design of an indolicidin peptide analogue with increased protease stability. Biochemistry. 2003;42(48):14130–8.
Article
PubMed
CAS
Google Scholar
Giangaspero A, Sandri L, Tossi A. Amphipathic alpha helical antimicrobial peptides. Eur J Biochem. 2001;268(21):5589–600.
Article
PubMed
CAS
Google Scholar
Yu HY, Tu CH, Yip BS, Chen HL, Cheng HT, Huang KC, Lo HJ, Cheng JW. Easy strategy to increase salt resistance of antimicrobial peptides. Antimicrob Agents Chemother. 2011;55(10):4918–21.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mohanram H, Bhattacharjya S. Resurrecting inactive antimicrobial peptides from the lipopolysaccharide trap. Antimicrob Agents Chemother. 2014;58(4):1987–96.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jerala R. Synthetic lipopeptides: a novel class of anti-infectives. Expert Opin Investig Drugs. 2007;16(8):1159–69.
Article
PubMed
CAS
Google Scholar
Chu-Kung AF, Nguyen R, Bozzelli KN, Tirrell M. Chain length dependence of antimicrobial peptide-fatty acid conjugate activity. J Colloid Interface Sci. 2010;345(2):160–7.
Article
PubMed
CAS
Google Scholar
Vagner J, Qu H, Hruby VJ. Peptidomimetics, a synthetic tool of drug discovery. Curr Opin Chem Biol. 2008;12(3):292–6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ringstad L, Kacprzyk L, Schmidtchen A, Malmsten M. Effects of topology, length, and charge on the activity of a kininogen-derived peptide on lipid membranes and bacteria. Biochim Biophys Acta. 2007;1768(3):715–27.
Article
PubMed
CAS
Google Scholar
Saravanan R, Li X, Lim K, Mohanram H, Peng L, Mishra B, Basu A, Lee JM, Bhattacharjya S, Leong SS. Design of short membrane selective antimicrobial peptides containing tryptophan and arginine residues for improved activity, salt-resistance, and biocompatibility. Biotechnol Bioeng. 2014;111(1):37–49.
Article
PubMed
CAS
Google Scholar
Kim H, Jang JH, Kim SC, Cho JH. De novo generation of short antimicrobial peptides with enhanced stability and cell specificity. J Antimicrob Chemother. 2014;69(1):121–32.
Article
PubMed
CAS
Google Scholar
Tyagi P, Singh M, Kumari H, Kumari A, Mukhopadhyay K. Bactericidal activity of curcumin I is associated with damaging of bacterial membrane. PLoS One. 2015;10(3):e0121313.
Article
PubMed
PubMed Central
CAS
Google Scholar
CLSI. M07-A8 methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard. 8th ed; 2009.
Google Scholar
CLSI: M100-S22 performance standards for antimicrobial susceptibility testing; twenty-second informational supplement. 2012.
Google Scholar
Chu HL, Yu HY, Yip BS, Chih YH, Liang CW, Cheng HT, Cheng JW. Boosting salt resistance of short antimicrobial peptides. Antimicrob Agents Chemother. 2013;57(8):4050–2.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang SK, Song JW, Gong F, Li SB, Chang HY, Xie HM, Gao HW, Tan YX, Ji SP. Design of an α-helical antimicrobial peptide with improved cell-selective and potent anti-biofilm activity. Sci Rep. 2016;6:27394.
Article
PubMed
PubMed Central
CAS
Google Scholar
Falk W, Goodwin RH Jr, Leonard EJ. A 48-well micro chemotaxis assembly for rapid and accurate measurement of leukocyte migration. J Immunol Methods. 1980;33(3):239–47.
Article
PubMed
CAS
Google Scholar
Kuhlmann KF, van Till JW, Boermeester MA, de Reuver PR, Tzvetanova ID, Offerhaus GJ, Ten Kate FJ, Busch OR, van Gulik TM, Gouma DJ, Crawford HC. Evaluation of matrix metalloproteinase 7 in plasma and pancreatic juice as a biomarker for pancreatic cancer. Cancer Epidemiol Biomark Prev. 2007;16(5):886–91.
Article
CAS
Google Scholar
Forde E, Humphreys H, Greene CM, Fitzgerald-Hughes D, Devocelle M. Potential of host defense peptide prodrugs as neutrophil elastase-dependent anti-infective agents for cystic fibrosis. Antimicrob Agents Chemother. 2014;58(2):978–85.
Article
PubMed
PubMed Central
CAS
Google Scholar
Doxakis A, Maria A, Savvas P, Zafiroula I. Assessment of the roles of cathepsins B, H and L in the progression of colorectal cancer. Journal Cancer Therapy. 2013;4:1–7.
Article
CAS
Google Scholar
Hansen A, Schafer I, Knappe D, Seibel P, Hoffmann R. Intracellular toxicity of proline-rich antimicrobial peptides shuttled into mammalian cells by the cell-penetrating peptide penetratin. Antimicrob Agents Chemother. 2012;56(10):5194–201.
Article
PubMed
PubMed Central
CAS
Google Scholar
Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol. 2005;3(3):238–50.
Article
PubMed
CAS
Google Scholar
Nguyen LT, Chau JK, Perry NA, de Boer L, Zaat SA, Vogel HJ. Serum stabilities of short tryptophan- and arginine-rich antimicrobial peptide analogs. PLoS One. 2010;5(9):e12684.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gopal R, Park JS, Seo CH, Park Y. Applications of circular dichroism for structural analysis of gelatin and antimicrobial peptides. Int J Mol Sci. 2012;13(3):3229–44.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ericksen B, Wu Z, Lu W, Lehrer RI. Antibacterial activity and specificity of the six human {alpha}-defensins. Antimicrob Agents Chemother. 2005;49(1):269–75.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bulet P, Stocklin R, Menin L. Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev. 2004;198:169–84.
Article
PubMed
CAS
Google Scholar
Park IY, Cho JH, Kim KS, Kim YB, Kim MS, Kim SC. Helix stability confers salt resistance upon helical antimicrobial peptides. J Biol Chem. 2004;279(14):13896–901.
Article
PubMed
CAS
Google Scholar
Shinnar AE, Butler KL, Park HJ. Cathelicidin family of antimicrobial peptides: proteolytic processing and protease resistance. Bioorg Chem. 2003;31(6):425–36.
Article
PubMed
CAS
Google Scholar
Lefkowitz RB, Schmid-Schonbein GW, Heller MJ. Whole blood assay for elastase, chymotrypsin, matrix metalloproteinase-2, and matrix metalloproteinase-9 activity. Anal Chem. 2010;82(19):8251–8.
Article
PubMed
CAS
Google Scholar
Iwaki K, Ogawa M, Tanaka S, Kosaki G. Radioimmunoassay for human pancreatic chymotrypsin and measurement of serum immunoreactive chymotrypsin contents in various diseases. Res Commun Chem Pathol Pharmacol. 1983;40(3):489–96.
PubMed
CAS
Google Scholar
Mora-Navarro C, Méndez-Vega J, Caraballo-León J, Lee M-r, Palecek S, Torres-Lugo M, Ortiz-Bermúdez P. Hydrophobicity of antifungal β-peptides is associated with their cytotoxic effect on in vitro human colon Caco-2 and liver HepG2 cells. PLoS One. 2016;11(3):e0149271.
Article
PubMed
PubMed Central
CAS
Google Scholar
Matsuzaki K, Sugishita K-i, Harada M, Fujii N, Miyajima K. Interactions of an antimicrobial peptide, magainin 2, with outer and inner membranes of gram-negative bacteria. Biochim Biophys Acta Biomembr. 1997;1327(1):119–30.
Article
CAS
Google Scholar
Klüver E, Schulz-Maronde S, Scheid S, Meyer B, Forssmann WG, Adermann K. Structure-activity relation of human beta-defensin 3: influence of disulfide bonds and cysteine substitution on antimicrobial activity and cytotoxicity. Biochemistry. 2005;44(28):9804–16.
Article
PubMed
CAS
Google Scholar
Hoover DM, Wu Z, Tucker K, Lu W, Lubkowski J. Antimicrobial characterization of human beta-defensin 3 derivatives. Antimicrob Agents Chemother. 2003;47(9):2804–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schroeder BO, Wu Z, Nuding S, Groscurth S, Marcinowski M, Beisner J, Buchner J, Schaller M, Stange EF, Wehkamp J. Reduction of disulphide bonds unmasks potent antimicrobial activity of human beta-defensin 1. Nature. 2011;469(7330):419–23.
Article
PubMed
CAS
Google Scholar
Tjabringa GS, Ninaber DK, Drijfhout JW, Rabe KF, Hiemstra PS. Human cathelicidin LL-37 is a chemoattractant for eosinophils and neutrophils that acts via formyl-peptide receptors. Int Arch Allergy Immunol. 2006;140(2):103–12.
Article
PubMed
CAS
Google Scholar
Pundir P, Catalli A, Leggiadro C, Douglas SE, Kulka M. Pleurocidin, a novel antimicrobial peptide, induces human mast cell activation through the FPRL1 receptor. Mucosal Immunol. 2014;7(1):177–87.
Article
PubMed
CAS
Google Scholar