FAO. The state of world fisheries and aquaculture 2016. Contributing to food security and nutrition for all. FAO: Rome; 2016. p. 200.
Google Scholar
Frans I, Michiels CW, Bossier P, Willems KA, Lievens B, Rediers H. Vibrio anguillarum as a fish pathogen: virulence factors, diagnosis and prevention. J Fish Dis. 2011;34(9):643–61. https://doi.org/10.1111/j.1365-2761.2011.01279.x.
Austin B, Austin DA. Bacterial fish pathogens: disease of farmed and wild fish. 5th ed. New York, NY: Springer; 2012.
Book
Google Scholar
O'Toole R, Von Hofsten J, Rosqvist R, Olsson PE, Wolf-Watz H. Visualisation of zebrafish infection by GFP-labelled Vibrio anguillarum. Microbial Pathog. 2004;37(1):41–6. https://doi.org/10.1016/j.micpath.2004.03.001.
Article
Google Scholar
Spanggaard B, Huber I, Nielsen J, Nielsen T, Gram L. Proliferation and location of Vibrio anguillarum during infection of rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis. 2000;23(6):423–7. https://doi.org/10.1046/j.1365-2761.2000.00257.x.
Article
Google Scholar
Denkin SM, Nelson DR. Regulation of Vibrio anguillarum empA metalloprotease expression and its role in virulence. Appl Environ Microbiol. 2004;70(7):4193–204. https://doi.org/10.1128/AEM.70.7.4193-4204.2004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li L, Rock JL, Nelson DR. Identification and characterization of a repeat-in-toxin gene cluster in Vibrio anguillarum. Infect Immun. 2008;76(6):2620–32. https://doi.org/10.1128/IAI.01308-07.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mou X, Spinard EJ, Driscoll MV, Zhao W, Nelson DR. H-NS is a negative regulator of the two hemolysin/cytotoxin gene clusters in Vibrio anguillarum. Infect Immun. 2013;81(10):3566–76. https://doi.org/10.1128/IAI.00506-13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rock JL, Nelson DR. Identification and characterization of a hemolysin gene cluster in Vibrio anguillarum. Infect Immun. 2006;74(5):2777–86. https://doi.org/10.1128/IAI.74.5.2777-2786.2006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Naka H, Dias GM, Thompson CC, Dubay C, Thompson FL, Crosa JH. Complete genome sequence of the marine fish pathogen Vibrio anguillarum harboring the pJM1 virulence plasmid and genomic comparison with other virulent strains of V. anguillarum and V. ordalii. Infect Immun. 2011;79(7):2889–900. https://doi.org/10.1128/IAI.05138-11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li L, Mou X, Nelson DR. Characterization of Plp, a phosphatidylcholine-specific phospholipase and hemolysin of Vibrio anguillarum. BMC Microbiol. 2013;13:271. https://doi.org/10.1186/1471-2180-13-271.
Article
PubMed
PubMed Central
Google Scholar
Hoiseth SK, Stocker BAD. Aromatic-dependent Salmonella-Typhimurium are non-virulent and effective as live vaccines. Nature. 1981;291(5812):238–9. https://doi.org/10.1038/291238a0.
Article
CAS
PubMed
Google Scholar
Bowe F, Ogaora P, Maskell D, Cafferkey M, Dougan G. Virulence, persistence, and immunogenicity of Yersinia enterocolitica O:8 aroA mutants. Infect Immun. 1989;57(10):3234–6.
CAS
PubMed
PubMed Central
Google Scholar
Roberts M, Maskell D, Novotny P, Dougan G. Construction and characterization in vivo of Bordetella pertussis aroA mutants. Infect Immun. 1990;58(3):732–9.
CAS
PubMed
PubMed Central
Google Scholar
Homchampa P, Strugnell RA, Adler B. Molecular analysis of the AroA gene of Pasteurella multocida and vaccine potential of a constructed AroA mutant. Mol Microbiol. 1992;6(23):3585–93. https://doi.org/10.1111/j.1365-2958.1992.tb01794.x.
Article
CAS
PubMed
Google Scholar
Lawrence ML, Cooper RK, Thune RL. Attenuation, persistence, and vaccine potential of an Edwardsiella ictaluri purA mutant. Infect Immun. 1997;65(11):4642–51.
CAS
PubMed
PubMed Central
Google Scholar
Mercado-Lubo R, Gauger EJ, Leatham MP, Conway T, Cohen PS. A Salmonella enterica serovar typhimurium succinate dehydrogenase/fumarate reductase double mutant is avirulent and immunogenic in BALB/c mice. Infect Immun. 2008;76(3):1128–34. https://doi.org/10.1128/IAI.01226-07.
Article
CAS
PubMed
Google Scholar
Mercado-Lubo R, Leatham MP, Conway T, Cohen PS. Salmonella enterica serovar Typhimurium mutants unable to convert malate to pyruvate and oxaloacetate are avirulent and immunogenic in BALB/c mice. Infect Immun. 2009;77(4):1397–405. https://doi.org/10.1128/IAI.01335-08.
Article
CAS
PubMed
PubMed Central
Google Scholar
Utley M, Franklin DP, Krogfelt KA, Laux DC, Cohen PSA. Salmonella typhimurium mutant unable to utilize fatty acids and citrate is avirulent and immunogenic in mice. FEMS Microbiol Lett. 1998;163(2):129–34.
Article
CAS
PubMed
Google Scholar
Yimga MT, Leatham MP, Allen JH, Laux DC, Conway T, Cohen PS. Role of gluconeogenesis and the tricarboxylic acid cycle in the virulence of Salmonella enterica serovar Tyhimurium in BALB/c mice. Infect Immun. 2006;74(2):1130–40. https://doi.org/10.1128/Iai.74.2.1130-1140.2006.
Article
CAS
Google Scholar
Valentine PJ, Devore BP, Heffron F. Identification of three highly attenuated Salmonella
typhimurium mutants that are more immunogenic and protective in mice than a prototypical aroA mutant. Infect Immun. 1998;66(7):3378–83.
Allen JH, Utley M, van Den Bosch H, Nuijten P, Witvliet M, McCormick BA, et al. A functional cra gene is required for Salmonella enterica serovar typhimurium virulence in BALB/c mice. Infect Immun. 2000;68(6):3772–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dahal N, Abdelhamed H, Karsi A, Lawrence ML. Tissue persistence and vaccine efficacy of tricarboxylic acid cycle and one-carbon metabolism mutant strains of Edwardsiella ictaluri. Vaccine. 2014;32(31):3971–6. https://doi.org/10.1016/j.vaccine.2014.05.016.
Article
CAS
PubMed
Google Scholar
Dahal N, Abdelhamed H, Lu J, Karsi A, Lawrence ML. Tricarboxylic acid cycle and one-carbon metabolism pathways are important in Edwardsiella ictaluri virulence. PLoS One. 2013;8(6):e65973. https://doi.org/10.1371/J.pone.0065973.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dahal N, Abdelhamed H, Lu J, Karsi A, Lawrence ML. Effect of multiple mutations in tricarboxylic acid cycle and one-carbon metabolism pathways on Edwardsiella ictaluri pathogenesis. Vet Microbiol. 2014;169(1–2):107–12. https://doi.org/10.1016/j.vetmic.2013.12.006.
Article
CAS
PubMed
Google Scholar
Alteri CJ, Smith SN, Mobley HL. Fitness of Escherichia coli during urinary tract infection requires gluconeogenesis and the TCA cycle. PLoS Pathog. 2009;5(5):e1000448. https://doi.org/10.1371/J.ppat.1000448.
Article
PubMed
PubMed Central
Google Scholar
VanderVen BC, Fahey RJ, Lee W, Liu Y, Abramovitch RB, Memmott C, et al. Novel inhibitors of cholesterol degradation in Mycobacterium tuberculosis reveal how the bacterium's metabolism is constrained by the intracellular environment. PLoS Pathog. 2015;11(2):e1004679. https://doi.org/10.1371/J.ppat.1004679.
Article
PubMed
PubMed Central
Google Scholar
Vaatanen P. Microbiological studies in coastal waters of the northern Baltic Sea. I. Distribution and abundance of bacteria and yeasts in the Tvarminne area. Walter Andre Nottback found. Sci Rep. 1976;1:1–58.
Google Scholar
Neidhardt FC, Bloch PL, Smith DF. Culture medium for enterobacteria. J Bacteriol. 1974;119(3):736–47.
CAS
PubMed
PubMed Central
Google Scholar
Aziz R, Bartels D, Best a, DeJongh M, Disz T, Edwards R, et al. the RAST server: rapid annotations using subsystems technology. BMC Genomics. 2008;9(1):75.
Article
PubMed
PubMed Central
Google Scholar
Milton DL, O'Toole R, Horstedt P, Wolf-Watz H, Flagellin A. Is essential for the virulence of Vibrio anguillarum. J Bacteriol. 1996;178(5):1310–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Varina M, Denkin SM, Staroscik AM, Nelson DR. Identification and characterization of Epp, the secreted processing protease for the Vibrio anguillarum EmpA metalloprotease. J Bacteriol. 2008;190(20):6589–97. https://doi.org/10.1128/JB.00535-08.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garcia T, Otto K, Kjelleberg S, Nelson DR. 1997. Growth of Vibrio anguillarum in salmon intestinal mucus. Appl. Environ. Microbiol. 1997;63(3):1034–9.
CAS
Google Scholar
Marden P, Tunlid A, Malmcrona-Friberg K, Oldham G, Kjelleberg S. 1985. Physiological and morphological changes during short term starvation of marine bacterial isolates. Arch. Microbiol. 1985;142(4):326–32.
Google Scholar
Ormonde P, Horstedt P, O'Toole R, Milton DL. Role of motility in adherence to and invasion of a fish cell line by Vibrio anguillarum. J Bacteriol. 2000;182(8):2326–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lindell K, Fahlgren A, Hjerde E, Willassen NP, Fallman M, Milton DL. Lipopolysaccharide O-Antigen prevents phagocytosis of Vibrio anguillarum by rainbow trout (Oncorhynchus mykiss) skin epithelial cells. PLoS One. 2012;7(5):e37678. https://doi.org/10.1371/J.pone.0037678.
Article
CAS
PubMed
PubMed Central
Google Scholar
Larsen MH, Boesen HT. Role of flagellum and chemotactic motility of Vibrio anguillarum for phagocytosis by and intracellular survival in fish macrophages. FEMS Microbiol Lett. 2001;203(2):149–52.
Article
CAS
PubMed
Google Scholar
Wang XH, Oon HL, Ho GW, Wong WS, Lim TM, Leung KY. Internalization and cytotoxicity are important virulence mechanisms in Vibrio-fish epithelial cell interactions. Microbiol. 1998;144(Pt 11):2987–3002. https://doi.org/10.1099/00221287-144-11-2987.
Article
CAS
Google Scholar
Minato Y, Fassio SR, Wolfe AJ, Hase CC. Central metabolism controls transcription of a virulence gene regulator in Vibrio cholerae. Microbiol. 2013;159(Pt 4):792–802. https://doi.org/10.1099/mic.0.064865-0.
Article
CAS
Google Scholar
Li L, Mou X, Nelson DR. HlyU is a positive regulator of hemolysin expression in Vibrio anguillarum. J Bacteriol. 2011;193(18):4779–89. https://doi.org/10.1128/JB.01033-10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Live NDR. Avirulent strain of V. anguillarum that protects fish against infection by virulent V. anguillarum and method of making the same. U.S. patent 6913757 B1. July. 2005:5.
Crosa JHA. Plasmid associated with virulence in the marine fish pathogen Vibrio anguillarum specifies an iron-sequestering system. Nature. 1980;284(5756):566–8.
Article
CAS
PubMed
Google Scholar
Wolf MK, Crosa JH. Evidence for the role of a siderophore in promoting Vibrio anguillarum infections. J Gen Microbiol. 1986;132(10):2949–52.
CAS
PubMed
Google Scholar
O'Toole R, Lundberg S, Fredriksson SA, Jansson A, Nilsson B, Wolf-Watz H. The chemotactic response of Vibrio anguillarum to fish intestinal mucus is mediated by a combination of multiple mucus components. J Bacteriol. 1999;181(14):4308–17.
PubMed
PubMed Central
Google Scholar
Muroga K, Delacruz MC. Fate and location of Vibrio a
nguillarum in tissues of artificially infected Ayu (Plecoglossus altivelis). Fish Pathol. 1987;22(2):99–103.
Altinok I, Capkin E, Karsi A. Succinate dehydrogenase mutant of Listonella anguillarum protects rainbow trout against vibriosis. Vaccine. 2015;33(42):5572–7. https://doi.org/10.1016/j.vaccine.2015.09.003.
Article
CAS
PubMed
Google Scholar
Denkin SM, Nelson DR. Induction of protease activity in Vibrio anguillarum by gastrointestinal mucus. Appl Environ Microbiol. 1999;65(8):3555–60.
CAS
PubMed
PubMed Central
Google Scholar
Simon R, Priefer U, Puhler A. A broad host range mobilization system for in vivo genetic-engineering - transposon mutagenesis in gram-negative bacteria. Bio-Technol. 1983;1(9):784–91. https://doi.org/10.1038/Nbt1183-784.
Article
CAS
Google Scholar
McGee K, Horstedt P, Milton DL. Identification and characterization of additional flagellin genes from Vibrio anguillarum. J Bacteriol. 1996;178(17):5188–98.
Article
CAS
PubMed
PubMed Central
Google Scholar