Sun Z, Yu J, Dan T, Zhang W, Zhang H. Phylogenesis and evolution of lactic acid bacteria. In: Zhang H, Cai Y, editors. Lactic acid bacteria. Netherlands: Springer; 2014. p. 1–101.
Google Scholar
Sakala RM, Hayashidani H, Kato Y, Hirata T, Makino Y, Fukushima A, Yamada T, Kaneuchi C, Ogawa M. Change in the composition of the microflora on vacuum-packaged beef during chiller storage. Int J Food Microbiol. 2002;74(1–2):87–99.
Article
PubMed
Google Scholar
Teuber M. Genus II. Lactococcus Schleifer, Kraus, Dvorak, Kilpper-Balz,Collins and Fischer 1986. In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB, editors. Bergey’s manual of systematic bacteriology, vol. 3. Berlin: Springer; 2009. p. 711–22.
Google Scholar
Schleifer KH, Kraus J, Dvorak C, Kilpper-Bälz R, Collins MD, Fischer W. Transfer of Streptococcus lactis and related streptococci to the genus Lactococcus gen. Nov. Syst Appl Microbiol. 1985;6(2):183–95.
Article
CAS
Google Scholar
Park SH, Itoh K, Kikuchi E, Niwa H, Fujisawa T. Identification and characteristics of nisin Z-producing Lactococcus lactis subsp. lactis isolated from Kimchi. Curr Microbiol. 2003;46(5):385–8.
Article
CAS
PubMed
Google Scholar
Rattanachaikunsopon P, Phumkhachorn P. Lactic acid bacteria: their antimicrobial compounds and their uses in food production. Ann Biol Res. 2010;1(4):218–28.
CAS
Google Scholar
Morello E, Bermúdez-Humarán LG, Llull D, Solé V, Miraglio N, Langella P, Poquet I. Lactococcus lactis, an efficient cell factory for recombinant protein production and secretion. J Mol Microbiol Biotechnol. 2008;14(1–3):48–58.
CAS
PubMed
Google Scholar
Fang H, Elina T, Heikki A, Seppo S. Modulation of humoral immune response through probiotic intake. FEMs Immunol Med Mic. 2000;29:47–52.
Article
CAS
Google Scholar
Yadav K, Bhardwaj A, Kaur G, Iyer R, De S, Kumar N, Malik RK. Potential of Lactococcus lactis as a probiotic and functional lactic acid bacteria in dairy industry. Int J Probiotics Prebiotics. 2009;4:219–28.
Google Scholar
Teixeira LM, Merquior VL, Vianni MC, Carvalho MG, Fracalanzza SE, Steigerwalt AG, Brenner DJ, Facklam RR. Phenotypic and genotypic characterization of atypical Lactococcus garvieae strains isolated from water buffalos with subclinical mastitis and confirmation of L. garvieae as a senior subjective synonym of Enterococcus seriolicida. Int J Syst Bacteriol. 1996;46(3):664–8.
Article
CAS
PubMed
Google Scholar
Alegría A, Alvarezmartín P, Sacristán N, Fernández E, Delgado S, Mayo B. Diversity and evolution of the microbial populations during manufacture and ripening of Casín, a traditional Spanish, starter-free cheese made from cow's milk. Int J Food Microbiol. 2009;136:44–51.
Article
PubMed
Google Scholar
Fortina MG, Ricci G, Acquati A, Zeppa G, Gandini A, Manachini PL. Genetic characterization of some lactic acid bacteria occurring in an artisanal protected denomination origin (PDO) Italian cheese, the Toma piemontese. Food Microbiol. 2003;20(02):397–404.
Article
CAS
Google Scholar
Foschino R, Picozzi C, Borghi M, Cerliani MC, Cresci E. Investigation on the microflora of Caprino Lomeardo cheese from raw goat milk.Ital. J Food Sci. 2006;18(1):33–49.
CAS
Google Scholar
Yu J, Wang HM, Zha MS, Qing YT, Bai N, Ren Y, Xi XX, Liu WJ, Menghe BLG, Zhang HP. Molecular identification and quantification of lactic acid bacteria in traditional fermented dairy foods of Russia. J Dairy Sci. 2015;98(8):5143–454.
Article
CAS
PubMed
Google Scholar
Touchon M, Cury J, Yoon EJ, Krizova L, Cerqueira GC, Murphy C, Feldgarden M, Wortman J, Clermont D, Lambert T. The genomic diversification of the whole Acinetobacter genus: origins, mechanisms, and consequences. Genome Biol Evol. 2014;6(10):2866–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao XY, Zhi XY, Li HW, Klenk HP, Li WJ. Comparative genomics of the bacterial genus Streptococcus illuminates evolutionary implications of species groups. PLoS One. 2014;9:e101229.
Article
PubMed
PubMed Central
Google Scholar
Kant R, Blom J, Palva A, Siezen RJ, de Vos WM. Comparative genomics of Lactobacillus. J Microbial Biotechnol. 2010;4(3):323–32.
Article
Google Scholar
Lugli GA, Milani C, Turroni F, Duranti S, Ferrario C, Viappiani A, Mancabelli L, Mangifesta M, Taminiau B, Delcenserie V, van Sinderen D, Ventura M. Investigation of the evolutionary development of the genus Bifidobacterium by comparative genomics. Appl Environ Microbiol. 2014;80:6383–94.
Article
PubMed
PubMed Central
Google Scholar
Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich SD, Sorokin A. The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res. 2001;11(5):731–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang CH, Wu CC, Cheng WS, Chung MC, Tsai YC, Chang CH. A17, the first sequenced strain of Lactococcus lactis subsp. cremoris with potential immunomodulatory functions. Genome Announc. 2015;3(1):e01563–14.
PubMed
PubMed Central
Google Scholar
Andreevskaya M, Johansson P, Laine P, Smolander OP, Sonck M, Rahkila R, Jääskeläinen E, Paulin L, Auvinen P, Björkroth J. Genome sequence and transcriptome analysis of meat spoilage lactic acid bacterium Lactococcus piscium MKFS47. Appl Environ Microbiol. 2015;81:3800–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao F, Ma H, Ying L, Teng K, Kang X, Wang F, Yang X, Jin Z. Complete genome sequence of Lactococcus lactis S0, an efficient producer of nisin. J Biotechnol. 2015;198:15–6.
Article
PubMed
Google Scholar
Meslier V, Loux V, Renault P. Genome sequence of Lactococcus raffinolactis strain 4877, isolated from natural dairy starter culture. J Bacteriol. 2012;194(22):6364.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Qi P, Liu Y. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience. 2012;1(1):1–6.
Article
Google Scholar
Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M. The RAST server: rapid annotations using subsystems technology. BMC Genomics. 2008;9:75.
Article
PubMed
PubMed Central
Google Scholar
Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M, et al. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res. 2014;42(Database issue):D206–14.
Article
CAS
PubMed
Google Scholar
Kanehisa M, Sato Y, Kawashima M, Furumichi M, Mao T. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2015;44(D1):D457–62.
Article
PubMed
PubMed Central
Google Scholar
Lukjancenko O, Ussery DW, Wassenaar TM. Comparative genomics of Bifidobacterium, Lactobacillus and related probiotic genera. Microb Ecol. 2012;63(3):651–73.
Article
CAS
PubMed
Google Scholar
Sun Z, Zhang W, Guo C, Yang X, Liu WJ, Wu YR, Song YQ, Kwok LY, Cui YJ, Menghe BLG, Yang TF, Hu LP, Zhang HP. Comparative genomic analysis of 45 type strains of the genus Bifidobacterium: a snapshot of its genetic diversity and evolution. PLoS One. 2015;10(2):e0117912.
Article
PubMed
PubMed Central
Google Scholar
Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol. 2007;57(1):81–91.
Article
CAS
PubMed
Google Scholar
Sun Z, Harris HMB, Mccann A, Guo C, Argimón S, Zhang W, Yang X, Jeffery IB, Cooney JC, Kagawa TF. Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera. Nat Commun. 2015;6:8322.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC bioinformatics. 2004;5:113.
Article
PubMed
PubMed Central
Google Scholar
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59(3):307–21.
Article
CAS
PubMed
Google Scholar
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870.
Article
CAS
PubMed
Google Scholar
Pérez T, Balcázar JL, Peix A, Valverde A, Velázquez E, De BI, Ruizzarzuela I. Lactococcus lactis subsp. tructae subsp. nov. isolated from the intestinal mucus of brown trout (Salmo Trutta) and rainbow trout (Oncorhynchus Mykiss). Int J Syst Evol Microbiol. 2011;61(8):1894–8.
Article
PubMed
Google Scholar
Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A. 2009;106(45):19126–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benthin S, Nielsen J, Villadsen J. Galactose expulsion during lactose metabolism in Lactococcus lactis subsp. cremoris FD1 due to dephosphorylation of intracellular galactose 6-phosphate. Appl Environ Microbiol. 1994;60(4):1254–9.
CAS
PubMed
PubMed Central
Google Scholar
Lorca G, Reddy L, Nguyen A, Sun EI, Tseng J, Yen MR, Saier MH, Milton H, Saier J. Lactic acid bacteria: comparative genomic analyses of transport systems. In: Mozzi F, Raya RR, Vignolo GM (eds) Biotechnology of lactic acid bacteria: novel applications. Oxford: Wiley-Blackwell. 2010. pp. 73–87. doi:10.1002/9780813820866.ch1.
Burke GR, Moran NA. Massive genomic decay in Serratia symbiotica, a recently evolved symbiont of aphids. Genome Biol Evol. 2011;3(5):195–208.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hao W, Zhang Z, Hu S, Yu J. On the molecular mechanism of GC content variation among eubacterial genomes. Biol Direct. 2012;7(1):2.
Article
Google Scholar
Konstantinidis KT, Tiedje JM. Trends between gene content and genome size in prokaryotic species with larger genomes. Proc Natl Acad Sci U S A. 2004;101(9):3160–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol. 1991;173(2):697–703.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol. 1994;44(4):846–9.
Article
CAS
Google Scholar
Xu J. Microbial ecology in the age of genomics and metagenomics: concepts, tools, and recent advances. Mol Ecol. 2006;15(7):9–10.
Article
Google Scholar
Li HW, Zhi XY, Yao JC, Zhou Y, Tang SK, Klenk HP, Zhao J, Li WJ. Comparative genomic analysis of the genus Nocardiopsis provides new insights into its genetic mechanisms of environmental adaptability. PLoS One. 2013;8(4):e61528.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cho SL, Nam SW, Yoon JH, Lee JS, Sukhoom A, Kim W. Lactococcus chungangensis sp. nov., a lactic acid bacterium isolated from activated sludge foam. Int J Syst Evol Microbiol. 2008;58(Pt 8):1844–9.
Article
CAS
PubMed
Google Scholar
Cai Y, Yang J, Pang H, Kitahara M. Lactococcus fujiensis sp. nov., a lactic acid bacterium isolated from vegetable matter. Int J Syst Evol Microbiol. 2011;61(Pt7):1590–4.
Article
CAS
PubMed
Google Scholar
Williams AM, Fryer JL, Collins MD. Lactococcus piscium sp. nov. a new Lactococcus species from salmonid fish. FEMS Microbiol Letters. 1990;68(1–2):109–13.
Article
CAS
Google Scholar