Xin XF, He SY. Pseudomonas syringae pv. tomato DC3000: a model pathogen for probing disease susceptibility and hormone signaling in plants. Annu Rev Phytopathol. 2013;51:473–98.
Article
CAS
PubMed
Google Scholar
Lindeberg M, Cunnac S, Collmer A. Pseudomonas syringae type III effector repertoires: last words in endless arguments. Trends Microbiol. 2012;20(4):199–208.
Article
CAS
PubMed
Google Scholar
de Bruijn I, de Kock MJ, Yang M, de Waard P, van Beek TA, Raaijmakers JM. Genome-based discovery, structure prediction and functional analysis of cyclic lipopeptide antibiotics in Pseudomonas species. Mol Microbiol. 2007;63(2):417–28.
Article
PubMed
Google Scholar
Arrebola E, Cazorla FM, Perez-Garcia A, de Vicente A. Chemical and metabolic aspects of antimetabolite toxins produced by Pseudomonas syringae pathovars. Toxins (Basel). 2011;3(9):1089–110.
Article
CAS
Google Scholar
Gutierrez-Barranquero JA, Carrion VJ, Murillo J, Arrebola E, Arnold DL, Cazorla FM, de Vicente A. A Pseudomonas syringae diversity survey reveals a differentiated phylotype of the pathovar syringae associated with the mango host and mangotoxin production. Phytopathology. 2013;103(11):1115–29.
Article
PubMed
Google Scholar
Payne SM. Iron acquisition in microbial pathogenesis. Trends Microbiol. 1993;1(2):66–9.
Article
CAS
PubMed
Google Scholar
Boch J, Joardar V, Gao L, Robertson TL, Lim M, Kunkel BN. Identification of Pseudomonas syringae pv. tomato genes induced during infection of Arabidopsis thaliana. Mol Microbiol. 2002;44(1):73–88.
Article
CAS
PubMed
Google Scholar
Brown DG, Allen C. Ralstonia solanacearum genes induced during growth in tomato: an inside view of bacterial wilt. Mol Microbiol. 2004;53(6):1641–60.
Article
CAS
PubMed
Google Scholar
Marco ML, Legac J, Lindow SE. Conditional survival as a selection strategy to identify plant-inducible genes of Pseudomonas syringae. Appl Environ Microbiol. 2003;69(10):5793–801.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marco ML, Legac J, Lindow SE. Pseudomonas syringae genes induced during colonization of leaf surfaces. Environ Microbiol. 2005;7(9):1379–91.
Article
CAS
PubMed
Google Scholar
Osbourn AE, Barber CE, Daniels MJ. Identification of plant-induced genes of the bacterial pathogen Xanthomonas campestris pathovar campestris using a promoter-probe plasmid. EMBO J. 1987;6(1):23–8.
CAS
PubMed
PubMed Central
Google Scholar
Ramos-Gonzalez MI, Campos MJ, Ramos JL. Analysis of Pseudomonas putida KT2440 gene expression in the maize rhizosphere: in vivo [corrected] expression technology capture and identification of root-activated promoters. J Bacteriol. 2005;187(12):4033–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Silby MW, Levy SB. Use of in vivo expression technology to identify genes important in growth and survival of Pseudomonas fluorescens Pf0-1 in soil: discovery of expressed sequences with novel genetic organization. J Bacteriol. 2004;186(21):7411–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang S, Perna NT, Cooksey DA, Okinaka Y, Lindow SE, Ibekwe AM, Keen NT, Yang CH. Genome-wide identification of plant-upregulated genes of Erwinia chrysanthemi 3937 using a GFP-based IVET leaf array. Mol Plant Microbe Interact. 2004;17(9):999–1008.
Article
CAS
PubMed
Google Scholar
Zhao Y, Blumer SE, Sundin GW. Identification of Erwinia amylovora genes induced during infection of immature pear tissue. J Bacteriol. 2005;187(23):8088–103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hartmann T, Baronian G, Nippe N, Voss M, Schulthess B, Wolz C, Eisenbeis J, Schmidt-Hohagen K, Gaupp R, Sunderkotter C, et al. The catabolite control protein E (CcpE) affects virulence determinant production and pathogenesis of Staphylococcus aureus. J Biol Chem. 2014;289:29701–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Palace SG, Proulx MK, Lu S, Baker RE, Goguen JD. Genome-Wide Mutant Fitness Profiling Identifies Nutritional Requirements for Optimal Growth of Yersinia pestis in Deep Tissue. MBio. 2014;5(4). doi:10.1128/mBio.01385-14.
Schoen C, Kischkies L, Elias J, Ampattu BJ. Metabolism and virulence in Neisseria meningitidis. Front Cell Infect Microbiol. 2014;4:114.
Article
PubMed
PubMed Central
Google Scholar
Bucker R, Heroven AK, Becker J, Dersch P, Wittmann C. The pyruvate - tricarboxylic acid cycle node: a focal point of virulence control in the enteric pathogen Yersinia pseudotuberculosis. J Biol Chem. 2014;289:30114–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Papenfort K, Vogel J. Small RNA functions in carbon metabolism and virulence of enteric pathogens. Front Cell Infect Microbiol. 2014;4:91.
Article
PubMed
PubMed Central
Google Scholar
Lucchetti-Miganeh C, Burrowes E, Baysse C, Ermel G. The post-transcriptional regulator CsrA plays a central role in the adaptation of bacterial pathogens to different stages of infection in animal hosts. Microbiology. 2008;154(Pt 1):16–29.
Article
CAS
PubMed
Google Scholar
Wang L, Beer SV. Application of signature-tagged mutagenesis to the study of virulence of Erwinia amylovora. FEMS Microbiol Lett. 2006;265(2):164–71.
Article
CAS
PubMed
Google Scholar
Matas IM, Lambertsen L, Rodriguez-Moreno L, Ramos C. Identification of novel virulence genes and metabolic pathways required for full fitness of Pseudomonas savastanoi pv. savastanoi in olive (Olea europaea) knots. New Phytol. 2012;196(4):1182–96.
Article
CAS
PubMed
Google Scholar
Hovel-Miner G, Faucher SP, Charpentier X, Shuman HA. ArgR-regulated genes are derepressed in the Legionella-containing vacuole. J Bacteriol. 2010;192(17):4504–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ryan S, Begley M, Gahan CG, Hill C. Molecular characterization of the arginine deiminase system in Listeria monocytogenes: regulation and role in acid tolerance. Environ Microbiol. 2009;11(2):432–45.
Article
CAS
PubMed
Google Scholar
Sassetti CM, Rubin EJ. Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci U S A. 2003;100(22):12989–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Talaue MT, Venketaraman V, Hazbon MH, Peteroy-Kelly M, Seth A, Colangeli R, Alland D, Connell ND. Arginine homeostasis in J774.1 macrophages in the context of Mycobacterium bovis BCG infection. J Bacteriol. 2006;188(13):4830–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramos LS, Lehman BL, Peter KA, McNellis TW. Mutation of the Erwinia amylovora argD gene causes arginine auxotrophy, non-pathogenicity in apple and reduced virulence in pear. Appl Environ Microbiol. 2014;80:6739–49.
Article
PubMed
PubMed Central
Google Scholar
Livny J, Brencic A, Lory S, Waldor MK. Identification of 17 Pseudomonas aeruginosa sRNAs and prediction of sRNA-encoding genes in 10 diverse pathogens using the bioinformatic tool sRNAPredict2. Nucleic Acids Res. 2006;34(12):3484–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Filiatrault MJ, Stodghill PV, Myers CR, Bronstein PA, Butcher BG, Lam H, Grills G, Schweitzer P, Wang W, Schneider DJ, et al. Genome-wide identification of transcriptional start sites in the plant pathogen Pseudomonas syringae pv. tomato str. DC3000. PLoS One. 2011;6(12):e29335.
Article
CAS
PubMed
PubMed Central
Google Scholar
Filiatrault MJ, Stodghill PV, Bronstein PA, Moll S, Lindeberg M, Grills G, Schweitzer P, Wang W, Schroth GP, Luo S, et al. Transcriptome analysis of Pseudomonas syringae identifies new genes, noncoding RNAs, and antisense activity. J Bacteriol. 2010;192(9):2359–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kwon DH, Lu CD, Walthall DA, Brown TM, Houghton JE, Abdelal AT. Structure and regulation of the carAB operon in Pseudomonas aeruginosa and Pseudomonas stutzeri: no untranslated region exists. J Bacteriol. 1994;176(9):2532–42.
CAS
PubMed
PubMed Central
Google Scholar
Park SM, Lu CD, Abdelal AT. Purification and characterization of an arginine regulatory protein, ArgR, from Pseudomonas aeruginosa and its interactions with the control regions for the car, argF, and aru operons. J Bacteriol. 1997;179(17):5309–17.
CAS
PubMed
PubMed Central
Google Scholar
Newman KL, Chatterjee S, Ho KA, Lindow SE. Virulence of plant pathogenic bacteria attenuated by degradation of fatty acid cell-to-cell signaling factors. Mol Plant Microbe Interact. 2008;21(3):326–34.
Article
CAS
PubMed
Google Scholar
Guo J, Song X, Zou L-f, Zou H-s, Chen G-y. The small and large subunits of carbamoyl-phosphate synthase exhibit diverse contributions to pathogenicity in Xanthomonas citri subsp. citri. J Integr Agric. 2015;14(7):1338–47.
Article
CAS
Google Scholar
Zhuo T, Rou W, Song X, Guo J, Fan X, Kamau GG, Zou H. Molecular study on the carAB operon reveals that carB gene is required for swimming and biofilm formation in Xanthomonas citri subsp. citri. BMC Microbiol. 2015;15:225.
Article
PubMed
PubMed Central
Google Scholar
Cunin R, Glansdorff N, Pierard A, Stalon V. Biosynthesis and metabolism of arginine in bacteria. Microbiol Rev. 1986;50(3):314–52.
CAS
PubMed
PubMed Central
Google Scholar
Arioli S, Monnet C, Guglielmetti S, Mora D. Carbamoylphosphate synthetase activity is essential for the optimal growth of Streptococcus thermophilus in milk. J Appl Microbiol. 2009;107(1):348–54.
Article
CAS
PubMed
Google Scholar
Vaishnav P, Randev S, Jatiani S, Aggarwal S, Keharia H, Vyas PR, Nareshkumar G, Archana G. Characterization of carbamoyl phosphate synthetase of Streptomyces spp. Indian J Exp Biol. 2000;38(9):931–5.
CAS
PubMed
Google Scholar
Haas D, Holloway BW, Schambock A, Leisinger T. The genetic organization of arginine biosynthesis in Pseudomonas aeruginosa. Mol Gen Genet. 1977;154(1):7–22.
Article
CAS
PubMed
Google Scholar
Llamas I, Suarez A, Quesada E, Bejar V, del Moral A. Identification and characterization of the carAB genes responsible for encoding carbamoylphosphate synthetase in Halomonas eurihalina. Extremophiles. 2003;7(3):205–11.
CAS
PubMed
Google Scholar
Lu CD, Yang Z, Li W. Transcriptome analysis of the ArgR regulon in Pseudomonas aeruginosa. J Bacteriol. 2004;186(12):3855–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim W, Surette MG. Metabolic differentiation in actively swarming salmonella. Mol Microbiol. 2004;54(3):702–14.
Article
CAS
PubMed
Google Scholar
O’Toole GA. Microtiter dish biofilm formation assay. J Vis Exp. 2011;(47). doi:10.3791/2437.
Turnbough Jr CL, Switzer RL. Regulation of pyrimidine biosynthetic gene expression in bacteria: repression without repressors. Microbiol Mol Biol Rev. 2008;72(2):266–300. table of contents.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chu CP, West TP. Pyrimidine biosynthetic pathway of Pseudomonas fluorescens. J Gen Microbiol. 1990;136(5):875–80.
Article
CAS
PubMed
Google Scholar
Abdelal AT, Bussey L, Vickers L. Carbamoylphosphate synthetase from Pseudomonas aeruginosa. Subunit composition, kinetic analysis and regulation. Eur J Biochem. 1983;129(3):697–702.
Article
CAS
PubMed
Google Scholar
Naville M, Gautheret D. Premature terminator analysis sheds light on a hidden world of bacterial transcriptional attenuation. Genome Biol. 2010;11(9):R97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vogel J, Bartels V, Tang TH, Churakov G, Slagter-Jager JG, Huttenhofer A, Wagner EG. RNomics in Escherichia coli detects new sRNA species and indicates parallel transcriptional output in bacteria. Nucleic Acids Res. 2003;31(22):6435–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sharma CM, Hoffmann S, Darfeuille F, Reignier J, Findeiss S, Sittka A, Chabas S, Reiche K, Hackermuller J, Reinhardt R, et al. The primary transcriptome of the major human pathogen Helicobacter pylori. Nature. 2010;464(7286):250–5.
Article
CAS
PubMed
Google Scholar
Loh E, Dussurget O, Gripenland J, Vaitkevicius K, Tiensuu T, Mandin P, Repoila F, Buchrieser C, Cossart P, Johansson J. A trans-acting riboswitch controls expression of the virulence regulator PrfA in Listeria monocytogenes. Cell. 2009;139(4):770–9.
Article
CAS
PubMed
Google Scholar
Brooks DM, Hernandez-Guzman G, Kloek AP, Alarcon-Chaidez F, Sreedharan A, Rangaswamy V, Penaloza-Vazquez A, Bender CL, Kunkel BN. Identification and characterization of a well-defined series of coronatine biosynthetic mutants of Pseudomonas syringae pv. tomato DC3000. Mol Plant Microbe Interact. 2004;17(2):162–74.
Article
CAS
PubMed
Google Scholar
Rico A, Preston GM. Pseudomonas syringae pv. tomato DC3000 uses constitutive and apoplast-induced nutrient assimilation pathways to catabolize nutrients that are abundant in the tomato apoplast. Mol Plant Microbe Interact. 2008;21(2):269–82.
Article
CAS
PubMed
Google Scholar
Ramos LS, Sinn JP, Lehman BL, Pfeufer EE, Peter KA, McNellis TW. Erwinia amylovora pyrC mutant causes fire blight despite pyrimidine auxotrophy. Lett Appl Microbiol. 2015;60(6):572–9.
Article
CAS
PubMed
Google Scholar
Samant S, Lee H, Ghassemi M, Chen J, Cook JL, Mankin AS, Neyfakh AA. Nucleotide biosynthesis is critical for growth of bacteria in human blood. PLoS Pathog. 2008;4(2):e37.
Article
PubMed
PubMed Central
Google Scholar
Munkvold KR, Russell AB, Kvitko BH, Collmer A. Pseudomonas syringae pv. tomato DC3000 type III effector HopAA1-1 functions redundantly with chlorosis-promoting factor PSPTO4723 to produce bacterial speck lesions in host tomato. Mol Plant Microbe Interact. 2009;22(11):1341–55.
Article
CAS
PubMed
Google Scholar
Musken M, Di Fiore S, Dotsch A, Fischer R, Haussler S. Genetic determinants of Pseudomonas aeruginosa biofilm establishment. Microbiology. 2010;156(Pt 2):431–41.
Article
PubMed
Google Scholar
Ueda A, Attila C, Whiteley M, Wood TK. Uracil influences quorum sensing and biofilm formation in Pseudomonas aeruginosa and fluorouracil is an antagonist. Microb Biotechnol. 2009;2(1):62–74.
Article
CAS
PubMed
Google Scholar
Enos-Berlage JL, Guvener ZT, Keenan CE, McCarter LL. Genetic determinants of biofilm development of opaque and translucent Vibrio parahaemolyticus. Mol Microbiol. 2005;55(4):1160–82.
Article
CAS
PubMed
Google Scholar
Wei Q, Ma LZ. Biofilm matrix and its regulation in Pseudomonas aeruginosa. Int J Mol Sci. 2013;14(10):20983–1005.
Article
PubMed
PubMed Central
Google Scholar
Buell CR, Joardar V, Lindeberg M, Selengut J, Paulsen IT, Gwinn ML, Dodson RJ, Deboy RT, Durkin AS, Kolonay JF, et al. The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci U S A. 2003;100(18):10181–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang S, Yu S, Zhang Z, Wei Q, Yan L, Ai G, Liu H, Ma LZ. Coordination of swarming motility, biosurfactant synthesis, and biofilm matrix exopolysaccharide production in Pseudomonas aeruginosa. Appl Environ Microbiol. 2014;80(21):6724–32.
Article
PubMed
PubMed Central
Google Scholar
King EO, Ward MK, Raney DE. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med. 1954;44(2):301–7.
CAS
PubMed
Google Scholar
Keane PJ, Kerr A, New PB. Crown Gall of Stone Fruit .2. Identification and Nomenclature of Agrobacterium Isolates. Australian J Biol Sci. 1970; 23(3):585-&.
Schweizer HP. The agmR gene, an environmentally responsive gene, complements defective glpR, which encodes the putative activator for glycerol metabolism in Pseudomonas aeruginosa. J Bacteriol. 1991;173(21):6798–806.
CAS
PubMed
PubMed Central
Google Scholar
Markel E, Maciak C, Butcher BG, Myers CR, Stodghill P, Bao Z, Cartinhour S, Swingle B. An extracytoplasmic function sigma factor-mediated cell surface signaling system in Pseudomonas syringae pv. tomato DC3000 regulates gene expression in response to heterologous siderophores. J Bacteriol. 2011;193(20):5775–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Swingle B, Thete D, Moll M, Myers CR, Schneider DJ, Cartinhour S. Characterization of the PvdS-regulated promoter motif in Pseudomonas syringae pv. tomato DC3000 reveals regulon members and insights regarding PvdS function in other pseudomonads. Mol Microbiol. 2008;68(4):871–89.
Article
CAS
PubMed
Google Scholar
Vencato M, Tian F, Alfano JR, Buell CR, Cartinhour S, DeClerck GA, Guttman DS, Stavrinides J, Joardar V, Lindeberg M, et al. Bioinformatics-enabled identification of the HrpL regulon and type III secretion system effector proteins of Pseudomonas syringae pv. phaseolicola 1448A. Mol Plant Microbe Interact. 2006;19(11):1193–206.
Article
CAS
PubMed
Google Scholar
Moll S, Schneider DJ, Stodghill P, Myers CR, Cartinhour SW, Filiatrault MJ. Contruction of an rsmX co-variance model and identification of five rsmX non-coding RNAs in Pseudomonas syringae pv. tomato DC3000. RNA Biol. 2010;7(5):1–9.
Article
Google Scholar
Argaman L, Hershberg R, Vogel J, Bejerano G, Wagner EG, Margalit H, Altuvia S. Novel small RNA-encoding genes in the intergenic regions of Escherichia coli. Curr Biol. 2001;11(12):941–50.
Article
CAS
PubMed
Google Scholar
Park SH, Butcher BG, Anderson Z, Pellegrini N, Bao Z, D’Amico K, Filiatrault MJ. Analysis of the small RNA P16/RgsA in the plant pathogen Pseudomonas syringae pv. tomato strain DC3000. Microbiology. 2013;159(Pt 2):296–306.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schafer A, Tauch A, Jager W, Kalinowski J, Thierbach G, Puhler A. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene. 1994;145(1):69–73.
Article
CAS
PubMed
Google Scholar
West SE, Schweizer HP, Dall C, Sample AK, Runyen-Janecky LJ. Construction of improved Escherichia-Pseudomonas shuttle vectors derived from pUC18/19 and sequence of the region required for their replication in Pseudomonas aeruginosa. Gene. 1994;148(1):81–6.
Article
CAS
PubMed
Google Scholar
Ishiga Y, Ishiga T, Uppalapati SR, Mysore KS. Arabidopsis seedling flood-inoculation technique: a rapid and reliable assay for studying plant-bacterial interactions. Plant Methods. 2011;7:32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Merritt JH, Kadouri DE, O’Toole GA. Growing and analyzing static biofilms. Curr Protoc Microbiol. 2005; Chapter 1:Unit 1B.1.doi:10.1002/9780471729259.mc01b01s00.
O’Toole GA, Pratt LA, Watnick PI, Newman DK, Weaver VB, Kolter R. Genetic approaches to study of biofilms. Methods Enzymol. 1999;310:91–109.
Article
PubMed
Google Scholar