Vandamme P. Taxonomy of the family Campylobacteraceae. 2nd ed. Washington DC, USA: ASM Press; 2000.
Google Scholar
Merga JY, Williams NJ, Miller WG, Leatherbarrow AJH, Bennett M, Hall N, et al. Exploring the diversity of Arcobacter butzleri from cattle in the UK using MLST and whole genome sequencing. PLoS Biol. 2013;8(2):12.
Google Scholar
Nieva-Echevarria B, Martinez-Malaxetxebarria I, Girbau C, Alonso R, Fernández-Astorga A. Prevalence and genetic diversity of Arcobacter in food products in the north of Spain. J Food Prot. 2013;76(8):1447–50.
Article
PubMed
Google Scholar
Revez J, Huuskonen M, Ruusunen M, Lindström M, Hänninen M-L. Arcobacter species and their pulsed-field gel electrophoresis genotypes in Finnish raw milk during summer 2011. J Food Prot. 2013;76(9):1630–2.
Article
PubMed
Google Scholar
Rasmussen LH, Kjeldgaard J, Christensen JP, Ingmer H. Multilocus sequence typing and biocide tolerance of Arcobacter butzleri from Danish broiler carcasses. BMC Res Notes. 2013;6(322):7.
Google Scholar
Miller WG, Wesley IV, On SLW, Houf K, Megraud F, Wang G, et al. First multi-locus sequence typing scheme for Arcobacter spp. BMC Microbiol. 2009;9(1):196.
Article
PubMed Central
PubMed
Google Scholar
de Boer RF, Ott A, Güren P, van Zanten E, van Belkum A, Kooistra-Smid AMD. Detection of Campylobacter species and Arcobacter butzleri in stool samples by use of real-time multiplex PCR. J Clin Microbiol. 2013;51(1):253–9.
Article
PubMed Central
PubMed
Google Scholar
Miller WG, Parker CT, Rubenfield M, Mendz GL, Wösten MMSM, Ussery DW, et al. The complete genome sequence and analysis of the Epsilonproteobacterium Arcobacter butzleri. PLoS Biol. 2007;2(12):e1358.
Google Scholar
Douidah L, De Zutter L, Vandamme P, Houf K. Identification of five human and mammal associated Arcobacter species by a novel multiplex-PCR assay. J Microbiol Methods. 2010;80(3):281–6.
Article
CAS
PubMed
Google Scholar
Samie A, Obi CL, Barrett LJ, Powell SM, Guerrant RL. Prevalence of Campylobacter species, Helicobacter pylori and Arcobacter species in stool samples from the Venda region, Limpopo, South Africa: Studies using molecular diagnostic methods. J Infection. 2007;54(6):558–66.
Article
CAS
Google Scholar
Houf K, Stephan R. Isolation and characterization of the emerging foodborne pathogen Arcobacter from human stool. J Microbiol Methods. 2007;68(2):408–13.
Article
CAS
PubMed
Google Scholar
Collado L, Gutiérrez M, González M, Fernández H. Assessment of the prevalence and diversity of emergent Campylobacteria in human stool samples using a combination of traditional and molecular methods. Diagn Microbiol Infect Dis. 2013;75(4):3.
Article
Google Scholar
Fitzgerald C, Helsel LO, Nicholson MA, Olsen SJ, Swerdlow DL, Flahart R, et al. Evaluation of methods for subtyping Campylobacter jejuni during an outbreak involving a food handler. J Clin Microbiol. 2001;39(7):2386–90.
Article
PubMed Central
CAS
PubMed
Google Scholar
Van Belkum A, Tassios PT, Dijkshoorn L, Haeggman S, Cookson B, Fry NK, et al. Guidelines for the validation and application of typing methods for use in bacterial epidemiology. Clin Microbiol Infect. 2007;13:46.
Google Scholar
Maiden MCJ, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, et al. Multilocus sequence typing: A portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A. 1998;95(6):3140–5.
Article
PubMed Central
CAS
PubMed
Google Scholar
Korczak BM, Zurfluh M, Emler S, Kuhn-Oertli J, Kuhnert P. Multiplex strategy for multilocus sequence typing, fla typing, and genetic determination of antimicrobial resistance of Campylobacter jejuni and Campylobacter coli isolates collected in Switzerland. J Clin Microbiol. 2009;47(7):1996–2007.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lévesque S, Michaud S, Arbeit RD, Frost EH. High-resolution melting system to perform multilocus sequence typing of Campylobacter jejuni. PLoS ONE. 2011;6(1):e16167.
Article
PubMed Central
PubMed
Google Scholar
Miller JR, Koren S, Sutton G. Assembly algorithms for next-generation sequencing data. Genomics. 2010;95(6):315–27.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cody AJ, McCarthy ND, Jansen Van Rensburg M, Isinkaye T, Bentley SD, Parkhill J, et al. Real-time genomic epidemiological evaluation of human Campylobacter isolates by use of whole-genome multilocus sequence typing. J Clin Microbiol. 2013;51(8):2526–34.
Article
PubMed Central
CAS
PubMed
Google Scholar
Struelens M, Brisse S. From molecular to genomic epidemiology: transforming surveillance and control of infectious diseases. Euro Surveill. 2013;18(4):e20386.
Google Scholar
Taboada EN, Ross SL, Mutschall SK, MacKinnon JM, Roberts MJ, Buchanan CJ, et al. Development and validation of a comparative genomic fingerprinting method for high-resolution genotyping of Campylobacter jejuni. J Clin Microbiol. 2012;50(3):788–97.
Article
PubMed Central
CAS
PubMed
Google Scholar
Clark CG, Taboada E, Grant CCR, Blakeston C, Pollari F, Marshall B, et al. Comparison of molecular typing methods useful for detecting clusters of Campylobacter jejuni and C. coli isolates through routine surveillance. J Clin Microbiol. 2011;50(3):47.
Google Scholar
Taylor DN, Perlman DM, Echeverria PD, Lexomboon U, Blaser MJ. Campylobacter immunity and quantitative excretion rates in Thai children. J Infect Dis. 1993;168:754–8.
Article
CAS
PubMed
Google Scholar
Kokotovic B, On SLW. High-resolution genomic fingerprinting of Campylobacter jejuni and Campylobacter coli by analysis of amplified fragment length polymorphisms. FEMS Microbiol Lett. 1999;173(1):77–84.
Article
CAS
PubMed
Google Scholar
Kruczkiewicz P. A comparative genomic framework for the in silico design and assessment of molecular typing methods using whole-genome sequence data with application to Listeria monocytogenes. M.Sc. Lethbridge, AB: University of Lethbridge; 2013.
Google Scholar
Elliot EJ. Acute gastroenteritis in children. Brit Med J. 2007;334(7583):35–40.
Article
Google Scholar
Notifiable Diseases On-Line. Public Health Agency of Canada, Ottawa ON. [http://dsol-smed.phac-aspc.gc.ca/dsol-smed/ndis/index-eng.php]
Inglis GD, McAllister TA, Larney FJ, Topp E. Prolonged survival of Campylobacter species in bovine manure compost. Appl Environ Microbiol. 2010;76(4):1110–9.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hannon SJ, Taboada EN, Russell ML, Allan B, Waldner C, Wilson HL, et al. Genomics-based molecular epidemiology of Campylobacter jejuni isolates from feedlot cattle and from people in Alberta Canada. J Clin Microbiol. 2009;47(2):410–20.
Article
PubMed Central
CAS
PubMed
Google Scholar
Collado L, Figueras MJ. Taxonomy, epidemiology, and clinical relevance of the genus Arcobacter. Clin Microbiol Rev. 2011;24(1):174–92.
Article
PubMed Central
CAS
PubMed
Google Scholar
Douidah L, de Zutter L, Baré J, De Vos P, Vandamme P, Vandenberg O, et al. Occurrence of putative virulence genes in Arcobacter species isolated from humans and animals. J Clin Microbiol. 2012;50(3):735–41.
Article
PubMed Central
CAS
PubMed
Google Scholar
Douidah L, De Zutter L, Baré J, Houf K. Towards a typing strategy for Arcobacter species isolated from humans and animals and assessment of the in vitro genomic stability. Foodborne Pathog Dis. 2014;11(4):272–80.
Article
PubMed
Google Scholar
Jolley KA, Maiden MCJ. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics. 2010;11:595.
Article
PubMed Central
PubMed
Google Scholar
Taboada EN, MacKinnon JM, Luebbert CC, Gannon VPJ, Nash JHE, Rahn K. Comparative genomic assessment of Multi-Locus Sequence Typing: rapid accumulation of genomic heterogeneity among clonal isolates of Campylobacter jejuni. BMC Evol Biol. 2008;8(1):229.
Article
PubMed Central
PubMed
Google Scholar
Dagerhamn J, Blomberg C, Browall S, Sjostrom K, Morfeldt E, Henriques-Normark B. Determination of accessory gene patterns predicts the same relatedness among strains of Streptococcus pneumoniae as sequencing of housekeeping genes does and represents a novel approach in molecular epidemiology. J Clin Microbiol. 2008;46(3):863–8.
Article
PubMed Central
CAS
PubMed
Google Scholar
Deng X, Phillippy A, Li Z, Salzberg S, Zhang W. Probing the pan-genome of Listeria monocytogenes: new insights into intraspecific niche expansion and genomic diversification. BMC Genomics. 2010;11(1):500.
Article
PubMed Central
PubMed
Google Scholar
Carrillo CD, Kruczkiewicz P, Mutschall S, Tudor A, Clark C, Taboada EN. A framework for assessing the concordance of molecular typing methods and the true strain phylogeny of Campylobacter jejuni and C. coli using draft genome sequence data. Front Cell Infect Microbiol. 2012;2(57):12.
Google Scholar
Taboada EN, Clark CG, Sproston EL, Carrillo CD. Current methods for molecular typing of Campylobacter species. J Microbiol Methods. 2013;95(1):24–31.
Article
CAS
PubMed
Google Scholar
On SLW, Atabay HI, Amisu KO, Coker AO, Harrington CS. Genotyping and genetic diversity of Arcobacter butzleri by amplified fragment length polymorphism (AFLP) analysis. Lett Appl Microbiol. 2004;39(4):347–52.
Article
CAS
PubMed
Google Scholar
Merga JY, Leatherbarrow AJH, Winstanley C, Bennett M, Hart CA, Miller WG, et al. Comparison of Arcobacter isolation methods, and diversity of Arcobacter spp. in Cheshire, United Kingdom. Appl Environ Microbiol. 2011;77(5):1646–50.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hume ME, Harvey RB, Stanker LH, Droleskey RE, Poole TL, Zhang H-B. Genotypic variation among Arcobacter isolates from a farrow-to-finish swine facility. J Food Prot. 2001;64(5):645–51.
CAS
PubMed
Google Scholar
Inglis GD, Boras VF, Houde A. Enteric campylobacteria and RNA viruses associated with healthy and diarrheic humans in the Chinook health region of southwestern Alberta Canada. J Clin Microbiol. 2011;49(1):209–19.
Article
PubMed Central
CAS
PubMed
Google Scholar
Blaser MJ. Epidemiologic and clinical features of Campylobacter jejuni infections. J Infect Dis. 1997;176(2):S103–5.
Article
PubMed
Google Scholar
On SLW, Harrington CS, Atabay HI. Differentiation of Arcobacter species by numerical analysis of AFLP profiles and description of a novel Arcobacter from pig abortions and turkey faeces. J Appl Microbiol. 2003;95(5):1096–105.
Article
CAS
PubMed
Google Scholar
Geer LY, Marchler-Bauer A, Geer RC, Han L, He J, He S, et al. The NCBI BioSystems database. Nucleic Acids Res. 2010;38 suppl 1:D492–6.
Article
PubMed Central
CAS
PubMed
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10.
Article
CAS
PubMed
Google Scholar
Ewing B, Green P. Base-calling of automated sequencer traces using Phred II Error probabilities. Genome Res. 1998;8(3):186–94.
Article
CAS
PubMed
Google Scholar
Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM, Biral I. ABySS: A parallel assembler for short read sequence data. Genome Res. 2009;19:1117–23.
Article
PubMed Central
CAS
PubMed
Google Scholar
Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics. 2008;9(75):15.
Google Scholar
Kruczkiewicz P, Mutschall S, Barker D, Thomas J, Van Domselaar G, Gannon VPJ, et al. MIST: a tool for rapid in silico generation of molecular data from bacterial genome sequences. https://bitbucket.org/peterk87/microbialinsilicotyper/wiki/Home#markdown-header-paper.
R: A language and environment for statistical computing [http://www.R-project.org]
Carriço JA, Costa-Silva C, Melo-Cristino J, Pinto FR, de Lencastre H, Almeida JS, et al. Illustration of a common framework for relating multiple typing methods by application to macrolide-resistant Streptococcus pyogenes. J Clin Microbiol. 2006;44(7):2524–32.
Article
PubMed Central
PubMed
Google Scholar
Robinson DF, Foulds LR. Comparison of phylogenetic trees. Math Biosci. 1981;53(1–2):131–47.
Article
Google Scholar
Severiano A, Pinto FR, Ramirez M, Carriço JA. Adjusted Wallace Coefficient as a measure of congruence between typing methods. J Clin Microbiol. 2011;49(11):3997–4000.
Article
PubMed Central
PubMed
Google Scholar
Rodrigo AG, Kelly-Borges M, Bergquist PR, Bergquist PL. A randomisation test of the null hypothesis that two cladograms are sample estimates of a parametric phylogenetic tree. N Z J Bot. 1993;31(3):257–68.
Article
Google Scholar
Rozen S, Skaletsky HJ. Primer3 on the WWW for general users and for biologist programmers. Totowa, NJ: Humana Press Inc; 2000.
Google Scholar
Kaplinski L, Andreson R, Puurand T, Remm M. MultiPLX: automatic grouping and evaluation of PCR primers. Bioinformatics. 2005;21(8):1701–2.
Article
CAS
PubMed
Google Scholar
Hunter PR, Gaston MA. Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity. J Clin Microbiol. 1988;26(11):2465–6.
PubMed Central
CAS
PubMed
Google Scholar