Lee KB, Liu CT, Anzai Y, Kim H, Aono T, Oyaizu H: The hierarchical system of the `Alphaproteobacteria: description of Hyphomonadaceae fam. nov., Xanthobacteraceae fam. nov. and Erythrobacteraceae fam. nov. Int J Syst Evol Microbiol. 2005, 55 (Pt 5): 1907-1919. 10.1099/ijs.0.63663-0.
Article
CAS
PubMed
Google Scholar
Ferla MP, Thrash JC, Giovannoni SJ, Patrick WM: New rRNA gene-based phylogenies of the Alphaproteobacteria provide perspective on major groups, mitochondrial ancestry and phylogenetic instability. PLoS One. 2013, 8 (12): e83383-10.1371/journal.pone.0083383.
Article
PubMed Central
PubMed
Google Scholar
Ardissone S, Viollier PH: Developmental and environmental regulatory pathways in alpha-proteobacteria. Front Biosci (Landmark Ed). 2012, 17: 1695-1714. 10.2741/4013.
Article
CAS
Google Scholar
Komeili A: Molecular mechanisms of compartmentalization and biomineralization in magnetotactic bacteria. FEMS Microbiol Rev. 2012, 36 (1): 232-255. 10.1111/j.1574-6976.2011.00315.x.
Article
PubMed Central
CAS
PubMed
Google Scholar
Vuilleumier S, Chistoserdova L, Lee MC, Bringel F, Lajus A, Zhou Y, Gourion B, Barbe V, Chang J, Cruveiller S, Dossat C, Gillett W, Gruffaz C, Haugen E, Hourcade E, Levy R, Mangenot S, Muller E, Nadalig T, Pagni M, Penny C, Peyraud R, Robinson DG, Roche D, Rouy Z, Saenampechek C, Salvignol G, Vallenet D, Wu Z, Marx CJ:Methylobacterium genome sequences: a reference blueprint to investigate microbial metabolism of C1 compounds from natural and industrial sources. PLoS One. 2009, 4 (5): e5584-10.1371/journal.pone.0005584.
Article
PubMed Central
PubMed
Google Scholar
Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC: How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model. Nat Rev Microbiol. 2007, 5 (8): 619-633. 10.1038/nrmicro1705.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kondorosi E, Mergaert P, Kereszt A: A paradigm for endosymbiotic life: cell differentiation of Rhizobium bacteria provoked by host plant factors. Annu Rev Microbiol. 2013, 67: 611-628. 10.1146/annurev-micro-092412-155630.
Article
CAS
PubMed
Google Scholar
Todhanakasem T, Sangsutthiseree A, Areerat K, Young GM, Thanonkeo P: Biofilm production by Zymomonas mobilis enhances ethanol production and tolerance to toxic inhibitors from rice bran hydrolysate. N Biotechnol. 2014, 31 (5): 451-459. 10.1016/j.nbt.2014.06.002.
Article
CAS
PubMed
Google Scholar
Guzman LM, Belin D, Carson MJ, Beckwith J: Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol. 1995, 177 (14): 4121-4130.
PubMed Central
CAS
PubMed
Google Scholar
Morgan-Kiss RM, Wadler C, Cronan JE: Long-term and homogeneous regulation of the Escherichia coli araBAD promoter by use of a lactose transporter of relaxed specificity. Proc Natl Acad Sci USA. 2002, 99 (11): 7373-7377. 10.1073/pnas.122227599.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sibley MH, Raleigh EA: A versatile element for gene addition in bacterial chromosomes. Nucleic Acids Res. 2012, 40 (3): e19-10.1093/nar/gkr1085.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lutz R, Bujard H: Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2regulatory elements.Nucleic Acids Res 1997, 25(6):12031210.,
Brosius J, Erfle M, Storella J: Spacing of the −10 and −35 regions in the tac promoter. Effect on its in vivo activity. J Biol Chem. 1985, 260 (6): 3539-3541.
CAS
PubMed
Google Scholar
Thanbichler M, Iniesta AA, Shapiro L: A comprehensive set of plasmids for vanillate- and xylose-inducible gene expression in Caulobacter crescentus. Nucleic Acids Res. 2007, 35 (20): e137-10.1093/nar/gkm818.
Article
PubMed Central
PubMed
Google Scholar
Meisenzahl AC, Shapiro L, Jenal U: Isolation and characterization of a xylose-dependent promoter from Caulobacter crescentus. J Bacteriol. 1997, 179 (3): 592-600.
PubMed Central
CAS
PubMed
Google Scholar
Stephens C, Christen B, Watanabe K, Fuchs T, Jenal U: Regulation of D-xylose metabolism in Caulobacter crescentus by a LacI-type repressor. J Bacteriol. 2007, 189 (24): 8828-8834. 10.1128/JB.01342-07.
Article
PubMed Central
CAS
PubMed
Google Scholar
Curtis PD, Brun YV: Getting in the loop: regulation of development in Caulobacter crescentus. Microbiol Mol Biol Rev. 2010, 74 (1): 13-41. 10.1128/MMBR.00040-09.
Article
PubMed Central
CAS
PubMed
Google Scholar
Barnett MJ, Fisher RF: Global gene expression in the rhizobial-legume symbiosis. Symbiosis. 2006, 42 (1): 1-24.
CAS
Google Scholar
Peterson TA, Russelle MP: Alfalfa and the nitrogen cycle in the Corn Belt. J Soil Water Conserv. 1991, 46 (3): 229-235.
Google Scholar
Graham PH, Vance CP: Legumes: importance and constraints to greater use. Plant Physiol. 2003, 131 (3): 872-877. 10.1104/pp.017004.
Article
PubMed Central
CAS
PubMed
Google Scholar
Khan SR, Gaines J, Roop RM, Farrand SK: Broad-host-range expression vectors with tightly regulated promoters and their use to examine the influence of TraR and TraM expression on Ti plasmid quorum sensing. Appl Environ Microbiol. 2008, 74 (16): 5053-5062. 10.1128/AEM.01098-08.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pini F, Frage B, Ferri L, De Nisco NJ, Mohapatra SS, Taddei L, Fioravanti A, Dewitte F, Galardini M, Brilli M, Villeret V, Bazzicalupo M, Mengoni A, Walker GC, Becker A, Biondi EG: The DivJ, CbrA and PleC system controls DivK phosphorylation and symbiosis in Sinorhizobium meliloti. Mol Microbiol. 2013, 90 (1): 54-71.
PubMed Central
CAS
PubMed
Google Scholar
Poysti NJ, Loewen ED, Wang Z, Oresnik IJ:Sinorhizobium meliloti pSymB carries genes necessary for arabinose transport and catabolism. Microbiology. 2007, 153 (Pt 3): 727-736. 10.1099/mic.0.29148-0.
Article
CAS
PubMed
Google Scholar
Geddes BA, Oresnik IJ: Inability to catabolize galactose leads to increased ability to compete for nodule occupancy in Sinorhizobium meliloti. J Bacteriol. 2012, 194 (18): 5044-5053. 10.1128/JB.00982-12.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mauchline TH, Fowler JE, East AK, Sartor AL, Zaheer R, Hosie AH, Poole PS, Finan TM: Mapping the Sinorhizobium meliloti 1021 solute-binding protein-dependent transportome. Proc Natl Acad Sci USA. 2006, 103 (47): 17933-17938. 10.1073/pnas.0606673103.
Article
PubMed Central
CAS
PubMed
Google Scholar
Brggemann C, Denger K, Cook AM, Ruff J: Enzymes and genes of taurine and isethionate dissimilation in Paracoccus denitrificans. Microbiology. 2004, 150 (Pt 4): 805-816. 10.1099/mic.0.26795-0.
Article
Google Scholar
Wilson JJ, Kappler U: Sulfite oxidation in Sinorhizobium meliloti. Biochim Biophys Acta. 2009, 1787 (12): 1516-1525. 10.1016/j.bbabio.2009.07.005.
Article
CAS
PubMed
Google Scholar
Tett AJ, Rudder SJ, Bourdes A, Karunakaran R, Poole PS: Regulatable vectors for environmental gene expression in Alphaproteobacteria. Appl Environ Microbiol. 2012, 78 (19): 7137-7140. 10.1128/AEM.01188-12.
Article
PubMed Central
CAS
PubMed
Google Scholar
Harrison CL, Crook MB, Peco G, Long SR, Griffitts JS: Employing site-specific recombination for conditional genetic analysis in Sinorhizobium meliloti. Appl Environ Microbiol. 2011, 77 (12): 3916-3922. 10.1128/AEM.00544-11.
Article
PubMed Central
CAS
PubMed
Google Scholar
Arango Pinedo C, Gage DJ: Plasmids that insert into the rhamnose utilization locus, rha: a versatile tool for genetic studies in Sinorhizobium meliloti. J Mol Microbiol Biotechnol. 2009, 17 (4): 201-210. 10.1159/000242446.
Article
CAS
PubMed
Google Scholar
Bringhurst RM, Gage DJ: An AraC-like transcriptional activator is required for induction of genes needed for alpha-galactoside utilization in Sinorhizobium meliloti. FEMS Microbiol Lett. 2000, 188 (1): 23-27.
CAS
PubMed
Google Scholar
Gage DJ, Long SR: α-Galactoside uptake in Rhizobium meliloti: isolation and characterization of agpA, a gene encoding a periplasmic binding protein required for melibiose and raffinose utilization. J Bacteriol. 1998, 180 (21): 5739-5748.
PubMed Central
CAS
PubMed
Google Scholar
Schlter JP, Reinkensmeier J, Barnett MJ, Lang C, Krol E, Giegerich R, Long SR, Becker A: Global mapping of transcription start sites and promoter motifs in the symbiotic alpha-proteobacterium Sinorhizobium meliloti 1021. BMC Genomics. 2013, 14: 156-10.1186/1471-2164-14-156.
Article
Google Scholar
Bringhurst RM, Cardon ZG, Gage DJ: Galactosides in the rhizosphere: utilization by Sinorhizobium meliloti and development of a biosensor. Proc Natl Acad Sci USA. 2001, 98 (8): 4540-4545. 10.1073/pnas.071375898.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bringhurst RM, Gage DJ: Control of inducer accumulation plays a key role in succinate-mediated catabolite repression in Sinorhizobium meliloti. J Bacteriol. 2002, 184 (19): 5385-5392. 10.1128/JB.184.19.5385-5392.2002.
Article
PubMed Central
CAS
PubMed
Google Scholar
Arango Pinedo C, Bringhurst RM, Gage DJ:Sinorhizobium meliloti mutants lacking phosphotransferase system enzyme HPr or EIIA are altered in diverse processes, including carbon metabolism, cobalt requirements, and succinoglycan production. J Bacteriol. 2008, 190 (8): 2947-2956. 10.1128/JB.01917-07.
Article
Google Scholar
Garcia PP, Bringhurst RM, Arango Pinedo C, Gage DJ: Characterization of a two-component regulatory system that regulates succinate-mediated catabolite repression in Sinorhizobium meliloti. J Bacteriol. 2010, 192 (21): 5725-5735. 10.1128/JB.00629-10.
Article
PubMed Central
CAS
PubMed
Google Scholar
Becker A, Barnett MJ, Capela D, Dondrup M, Kamp PB, Krol E, Linke B, Rberg S, Runte K, Schroeder BK, Weidner S, Yurgel SN, Batut J, Long SR, Phler A, Goesmann A: A portal for rhizobial genomes: RhizoGATE integrates a Sinorhizobium meliloti genome annotation update with postgenome data. J Biotechnol. 2009, 140 (12): 45-50. 10.1016/j.jbiotec.2008.11.006.
Article
PubMed Central
CAS
PubMed
Google Scholar
Eichhorn E, van der Ploeg JR, Leisinger T: Deletion analysis of the Escherichia coli taurine and alkanesulfonate transport systems. J Bacteriol. 2000, 182 (10): 2687-2695. 10.1128/JB.182.10.2687-2695.2000.
Article
PubMed Central
CAS
PubMed
Google Scholar
van der Ploeg JR, Weiss MA, Saller E, Nashimoto H, Saito N, Kertesz MA, Leisinger T: Identification of sulfate starvation-regulated genes in Escherichia coli: a gene cluster involved in the utilization of taurine as a sulfur source. J Bacteriol. 1996, 178 (18): 5438-5446.
PubMed Central
CAS
PubMed
Google Scholar
Masepohl B, Fuhrer F, Klipp W: Genetic analysis of a Rhodobacter capsulatus gene region involved in utilization of taurine as a sulfur source. FEMS Microbiol Lett. 2001, 205 (1): 105-111. 10.1111/j.1574-6968.2001.tb10932.x.
Article
CAS
PubMed
Google Scholar
Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL: NCBI BLAST: a better web interface. Nucleic Acids Res. 2008, 36 (Web Server issue): W5-W9. 10.1093/nar/gkn201.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wiethaus J, Schubert B, Pfander Y, Narberhaus F, Masepohl B: The GntR-like regulator TauR activates expression of taurine utilization genes in Rhodobacter capsulatus. J Bacteriol. 2008, 190 (2): 487-493. 10.1128/JB.01510-07.
Article
PubMed Central
CAS
PubMed
Google Scholar
Seo JS, Chong H, Park HS, Yoon KO, Jung C, Kim JJ, Hong JH, Kim H, Kim JH, Kil JI, Park CJ, Oh HM, Lee JS, Jin SJ, Um HW, Lee HJ, Oh SJ, Kim JY, Kang HL, Lee SY, Lee KJ, Kang HS: The genome sequence of the ethanologenic bacterium Zymomonas mobilis ZM4. Nat Biotechnol. 2005, 23 (1): 63-68. 10.1038/nbt1045.
Article
CAS
PubMed
Google Scholar
Fields AT, Navarrete CS, Zare AZ, Huang Z, Mostafavi M, Lewis JC, Rezaeihaghighi Y, Brezler BJ, Ray S, Rizzacasa AL, Barnett MJ, Long SR, Chen EJ, Chen JC: The conserved polarity factor podJ1 impacts multiple cell envelope-associated functions in Sinorhizobium meliloti. Mol Microbiol. 2012, 84 (5): 892-920. 10.1111/j.1365-2958.2012.08064.x.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pickering BS, Oresnik IJ: The twin arginine transport system appears to be essential for viability in Sinorhizobium meliloti. J Bacteriol. 2010, 192 (19): 5173-5180. 10.1128/JB.00206-10.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bastiat B, Sauviac L, Picheraux C, Rossignol M, Bruand C:Sinorhizobium meliloti sigma factors RpoE1 and RpoE4 are activated in stationary phase in response to sulfite. PLoS One. 2012, 7 (11): e50768-10.1371/journal.pone.0050768.
Article
PubMed Central
CAS
PubMed
Google Scholar
Miller JH: Experiments in Molecular Genetics. 1972, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
Google Scholar
Poindexter JS: Biological properties and classification of the Caulobacter group. Bacteriol Rev. 1964, 28: 231-295.
PubMed Central
CAS
PubMed
Google Scholar
Ely B: Genetics of Caulobacter crescentus. Methods Enzymol. 1991, 204: 372-384. 10.1016/0076-6879(91)04019-K.
Article
CAS
PubMed
Google Scholar
Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K: Current Protocols in Molecular Biology. 1998, John Wiley & Sons, New York, NY
Google Scholar
Goodman AE, Rogers PL, Skotnicki ML: Minimal medium for isolation of auxotrophic Zymomonas mutants. Appl Environ Microbiol. 1982, 44 (2): 496-498.
PubMed Central
CAS
PubMed
Google Scholar
Finan TM, Kunkel B, De Vos GF, Signer ER: Second symbiotic megaplasmid in Rhizobium meliloti carrying exopolysaccharide and thiamine synthesis genes. J Bacteriol. 1986, 167 (1): 66-72.
PubMed Central
CAS
PubMed
Google Scholar
Evinger M, Agabian N: Envelope-associated nucleoid from Caulobacter crescentus stalked and swarmer cells. J Bacteriol. 1977, 132 (1): 294-301.
PubMed Central
CAS
PubMed
Google Scholar
Swings J, De Ley J: The biology of Zymomonas. Bacteriol Rev. 1977, 41 (1): 1-46.
PubMed Central
CAS
PubMed
Google Scholar
Meade HM, Long SR, Ruvkun GB, Brown SE, Ausubel FM: Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn5 mutagenesis. J Bacteriol. 1982, 149 (1): 114-122.
PubMed Central
CAS
PubMed
Google Scholar
Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM, Peterson KM: Four new derivatives of the broad-host-range cloning vector pBBR1 MCS, carrying different antibiotic-resistance cassettes. Gene. 1995, 166 (1): 175-176. 10.1016/0378-1119(95)00584-1.
Article
CAS
PubMed
Google Scholar
Marx CJ, Lidstrom ME: Development of improved versatile broad-host-range vectors for use in methylotrophs and other Gram-negative bacteria. Microbiology. 2001, 147 (Pt 8): 2065-2075.
Article
CAS
PubMed
Google Scholar
Quandt J, Hynes MF: Versatile suicide vectors which allow direct selection for gene replacement in gram-negative bacteria. Gene. 1993, 127 (1): 15-21. 10.1016/0378-1119(93)90611-6.
Article
CAS
PubMed
Google Scholar
Oke V, Long SR: Bacterial genes induced within the nodule during the Rhizobium-legume symbiosis. Mol Microbiol. 1999, 32 (4): 837-849. 10.1046/j.1365-2958.1999.01402.x.
Article
CAS
PubMed
Google Scholar
Griffitts JS, Long SR: A symbiotic mutant of Sinorhizobium meliloti reveals a novel genetic pathway involving succinoglycan biosynthetic functions. Mol Microbiol. 2008, 67 (6): 1292-1306. 10.1111/j.1365-2958.2008.06123.x.
Article
CAS
PubMed
Google Scholar
Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual. 1989, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 2
Google Scholar
Beck S, Marlow VL, Woodall K, Doerrler WT, James EK, Ferguson GP: The Sinorhizobium meliloti MsbA2 protein is essential for the legume symbiosis. Microbiology. 2008, 154 (Pt 4): 1258-1270. 10.1099/mic.0.2007/014894-0.
Article
CAS
PubMed
Google Scholar