Converse PJ, Karakousis PC, Klinkenberg LG, Kesavan AK, Ly LH, Allen SS, Grosset JH, Jain SK, Lamichhane G, Manabe YC, McMurray DN, Nuermberger EL, Bishai WR: Role of the dosR-dosS two-component regulatory system in mycobacterium tuberculosis virulence in three animal models. Infect Immun. 2009, 77 (3): 1230-1237. 10.1128/IAI.01117-08.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bagchi , Mayuri G, Das TK, Tyagi JS: Molecular analysis of the dormancy response in Mycobacterium smegmatis: expression analysis of genes encoding the DevR-DevS two-component system, Rv3134c and chaperone alpha-crystallin homologues. FEMS Microbiol Lett. 2002, 211 (2): 231-237.
PubMed
Google Scholar
He H, Hovey R, Kane J, Singh V, Zahrt TC: MprAB is a stress-responsive two-component system that directly regulates expression of sigma factors SigB and SigE in Mycobacterium tuberculosis. J Bacteriol. 2006, 188 (6): 2134-2143. 10.1128/JB.188.6.2134-2143.2006.
Article
PubMed Central
CAS
PubMed
Google Scholar
Laub MT, Goulian M: Specificity in two-component signal transduction pathways. Annu Rev Genet. 2007, 41: 121-145. 10.1146/annurev.genet.41.042007.170548.
Article
CAS
PubMed
Google Scholar
Ma S, Selvaraj U, Ohman DE, Quarless R, Hassett DJ, Wozniak DJ: Phosphorylation-independent activity of the response regulators AlgB and AlgR in promoting alginate biosynthesis in mucoid Pseudomonas aeruginosa. J Bacteriol. 1998, 180 (4): 956-968.
PubMed Central
CAS
PubMed
Google Scholar
Baldus JM, Green BD, Youngman P, Moran CP: Phosphorylation of Bacillus subtilis transcription factor Spo0A stimulates transcription from the spoIIG promoter by enhancing binding to weak 0A boxes. J Bacteriol. 1994, 176 (2): 296-306.
PubMed Central
CAS
PubMed
Google Scholar
Boyd JM, Lory S: Dual function of PilS during transcriptional activation of the Pseudomonas aeruginosa pilin subunit gene. J Bacteriol. 1996, 178 (3): 831-839.
PubMed Central
CAS
PubMed
Google Scholar
Dubnau D, Hahn J, Roggiani M, Piazza F, Weinrauch Y: Two-component regulators and genetic competence in Bacillus subtilis. Res Microbiol. 1994, 145 (56): 403-411. 10.1016/0923-2508(94)90088-4.
Article
CAS
PubMed
Google Scholar
Wren BW, Colby SM, Cubberley RR, Pallen MJ: Degenerate PCR primers for the amplification of fragments from genes encoding response regulators from a range of pathogenic bacteria. FEMS Microbiol Lett. 1992, 78 (23): 287-291. 10.1111/j.1574-6968.1992.tb05583.x.
Article
CAS
PubMed
Google Scholar
Bretl DJ, Demetriadou C, Zahrt TC: Adaptation to environmental stimuli within the host: two-component signal transduction systems of Mycobacterium tuberculosis. Microbiol Mol Biol Rev. 2011, 75 (4): 566-582. 10.1128/MMBR.05004-11.
Article
PubMed Central
CAS
PubMed
Google Scholar
Parish T, Smith DA, Roberts G, Betts J, Stoker NG: The senX3-regX3 two-component regulatory system of Mycobacterium tuberculosis is required for virulence. Microbiology. 2003, 149 (Pt 6): 1423-1435. 10.1099/mic.0.26245-0.
Article
CAS
PubMed
Google Scholar
Rifat D, Bishai WR, Karakousis PC: Phosphate depletion: a novel trigger for Mycobacterium tuberculosis persistence. J Infect Dis. 2009, 200 (7): 1126-1135. 10.1086/605700.
Article
CAS
PubMed
Google Scholar
Rickman L, Saldanha JW, Hunt DM, Hoar DN, Colston MJ, Millar JB, Buxton RS: A two-component signal transduction system with a PAS domain-containing sensor is required for virulence of Mycobacterium tuberculosis in mice. Biochem Biophys Res Commun. 2004, 314 (1): 259-267. 10.1016/j.bbrc.2003.12.082.
Article
PubMed Central
CAS
PubMed
Google Scholar
Supply P, Magdalena J, Himpens S, Locht C: Identification of novel intergenic repetitive units in a mycobacterial two-component system operon. Mol Microbiol. 1997, 26 (5): 991-1003. 10.1046/j.1365-2958.1997.6361999.x.
Article
CAS
PubMed
Google Scholar
Rifat D, Karakousis PC: Differential regulation of the two-component regulatory system senX3-regX3 in Mycobacterium tuberculosis.Microbiology 2014.,
James JN, Hasan ZU, Ioerger TR, Brown AC, Personne Y, Carroll P, Ikeh M, Tilston-Lunel NL, Palavecino C, Sacchettini JC, Parish T: Deletion of SenX3-RegX3, a key two-component regulatory system of Mycobacterium smegmatis, results in growth defects under phosphate-limiting conditions. Microbiology. 2012, 158 (Pt 11): 2724-2731. 10.1099/mic.0.060319-0.
Article
CAS
PubMed
Google Scholar
Glover RT, Kriakov J, Garforth SJ, Baughn AD, Jacobs WR: The two-component regulatory system senX3-regX3 regulates phosphate-dependent gene expression in Mycobacterium smegmatis. J Bacteriol. 2007, 189 (15): 5495-5503. 10.1128/JB.00190-07.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rao NN, Liu S, Kornberg A: Inorganic polyphosphate in Escherichia coli: the phosphate regulon and the stringent response. J Bacteriol. 1998, 180 (8): 2186-2193.
PubMed Central
CAS
PubMed
Google Scholar
Cole ST, Supply P, Honore N: Repetitive sequences in Mycobacterium leprae and their impact on genome plasticity. Lepr Rev. 2001, 72 (4): 449-461.
CAS
PubMed
Google Scholar
Magdalena J, Vachee A, Supply P, Locht C: Identification of a new DNA region specific for members of Mycobacterium tuberculosis complex. J Clin Microbiol. 1998, 36 (4): 937-943.
PubMed Central
CAS
PubMed
Google Scholar
Magdalena J, Supply P, Locht C: Specific differentiation between Mycobacterium bovis BCG and virulent strains of the Mycobacterium tuberculosis complex. J Clin Microbiol. 1998, 36 (9): 2471-2476.
PubMed Central
CAS
PubMed
Google Scholar
Rengarajan J, Bloom BR, Rubin EJ: Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. Proc Natl Acad Sci U S A. 2005, 102 (23): 8327-8332. 10.1073/pnas.0503272102.
Article
PubMed Central
CAS
PubMed
Google Scholar
Himpens S, Locht C, Supply P: Molecular characterization of the mycobacterial SenX3-RegX3 two-component system: evidence for autoregulation. Microbiology. 2000, 146 (Pt 12): 3091-3098.
Article
CAS
PubMed
Google Scholar
Burbulys D, Trach KA, Hoch JA: Initiation of sporulation in B subtilis is controlled by a multicomponent phosphorelay. Cell. 1991, 64 (3): 545-552. 10.1016/0092-8674(91)90238-T.
Article
CAS
PubMed
Google Scholar
Grimshaw CE, Huang S, Hanstein CG, Strauch MA, Burbulys D, Wang L, Hoch JA, Whiteley JM: Synergistic kinetic interactions between components of the phosphorelay controlling sporulation in Bacillus subtilis. Biochemistry. 1998, 37 (5): 1365-1375. 10.1021/bi971917m.
Article
CAS
PubMed
Google Scholar
Janiak-Spens F, Cook PF, West AH: Kinetic analysis of YPD1-dependent phosphotransfer reactions in the yeast osmoregulatory phosphorelay system. Biochemistry. 2005, 44 (1): 377-386. 10.1021/bi048433s.
Article
CAS
PubMed
Google Scholar
Igo MM, Ninfa AJ, Stock JB, Silhavy TJ: Phosphorylation and dephosphorylation of a bacterial transcriptional activator by a transmembrane receptor. Genes Dev. 1989, 3 (11): 1725-1734. 10.1101/gad.3.11.1725.
Article
CAS
PubMed
Google Scholar
Fisher SL, Jiang W, Wanner BL, Walsh CT: Cross-talk between the histidine protein kinase VanS and the response regulator PhoB: characterization and identification of a VanS domain that inhibits activation of PhoB. J Biol Chem. 1995, 270 (39): 23143-23149. 10.1074/jbc.270.39.23143.
Article
CAS
PubMed
Google Scholar
Utsumi R, Brissette RE, Rampersaud A, Forst SA, Oosawa K, Inouye M: Activation of bacterial porin gene expression by a chimeric signal transducer in response to aspartate. Science. 1989, 245 (4923): 1246-1249. 10.1126/science.2476847.
Article
CAS
PubMed
Google Scholar
Tomomori C, Tanaka T, Dutta R, Park H, Saha SK, Zhu Y, Ishima R, Liu D, Tong KI, Kurokawa H, Qian H, Inouye M, Ikura M: Solution structure of the homodimeric core domain of Escherichia coli histidine kinase EnvZ. Nat Struct Biol. 1999, 6 (8): 729-734. 10.1038/11495.
Article
CAS
PubMed
Google Scholar
Tzeng YL, Hoch JA: Molecular recognition in signal transduction: the interaction surfaces of the Spo0F response regulator with its cognate phosphorelay proteins revealed by alanine scanning mutagenesis. J Mol Biol. 1997, 272 (2): 200-212. 10.1006/jmbi.1997.1226.
Article
CAS
PubMed
Google Scholar
Kim SK, Wilmes-Riesenberg MR, Wanner BL: Involvement of the sensor kinase EnvZ in the in vivo activation of the response-regulator PhoB by acetyl phosphate. Mol Microbiol. 1996, 22 (1): 135-147. 10.1111/j.1365-2958.1996.tb02663.x.
Article
CAS
PubMed
Google Scholar
Wanner BL: Gene regulation by phosphate in enteric bacteria. J Cell Biochem. 1993, 51 (1): 47-54. 10.1002/jcb.240510110.
Article
CAS
PubMed
Google Scholar
Saini DK, Malhotra V, Tyagi JS: Cross talk between DevS sensor kinase homologue, Rv2027c, and DevR response regulator of Mycobacterium tuberculosis. FEBS Lett. 2004, 565 (13): 75-80. 10.1016/j.febslet.2004.02.092.
Article
CAS
PubMed
Google Scholar
Roberts DM, Liao RP, Wisedchaisri G, Hol WG, Sherman DR: Two sensor kinases contribute to the hypoxic response of Mycobacterium tuberculosis. J Biol Chem. 2004, 279 (22): 23082-23087. 10.1074/jbc.M401230200.
Article
PubMed Central
CAS
PubMed
Google Scholar
Stock AM, Robinson VL, Goudreau PN: Two-component signal transduction. Annu Rev Biochem. 2000, 69: 183-215. 10.1146/annurev.biochem.69.1.183.
Article
CAS
PubMed
Google Scholar
Feng J, Atkinson MR, McCleary W, Stock JB, Wanner BL, Ninfa AJ: Role of phosphorylated metabolic intermediates in the regulation of glutamine synthetase synthesis in Escherichia coli. J Bacteriol. 1992, 174 (19): 6061-6070.
PubMed Central
CAS
PubMed
Google Scholar
Lukat GS, McCleary WR, Stock AM, Stock JB: Phosphorylation of bacterial response regulator proteins by low molecular weight phospho-donors. Proc Natl Acad Sci U S A. 1992, 89 (2): 718-722. 10.1073/pnas.89.2.718.
Article
PubMed Central
CAS
PubMed
Google Scholar
Batchelor E, Walthers D, Kenney LJ, Goulian M: The Escherichia coli CpxA-CpxR envelope stress response system regulates expression of the porins ompF and ompC. J Bacteriol. 2005, 187 (16): 5723-5731. 10.1128/JB.187.16.5723-5731.2005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Birkey SM, Liu W, Zhang X, Duggan MF, Hulett FM: Pho signal transduction network reveals direct transcriptional regulation of one two-component system by another two-component regulator: Bacillus subtilis PhoP directly regulates production of ResD. Mol Microbiol. 1998, 30 (5): 943-953. 10.1046/j.1365-2958.1998.01122.x.
Article
CAS
PubMed
Google Scholar
Wanner BL: Is cross regulation by phosphorylation of two-component response regulator proteins important in bacteria?. J Bacteriol. 1992, 174 (7): 2053-2058.
PubMed Central
CAS
PubMed
Google Scholar
Dahl JL, Kraus CN, Boshoff HI, Doan B, Foley K, Avarbock D, Kaplan G, Mizrahi V, Rubin H, Barry CE: The role of RelMtb-mediated adaptation to stationary phase in long-term persistence of Mycobacterium tuberculosis in mice. Proc Natl Acad Sci U S A. 2003, 100 (17): 10026-10031. 10.1073/pnas.1631248100.
Article
PubMed Central
CAS
PubMed
Google Scholar
Betts JC, Lukey PT, Robb LC, McAdam RA, Duncan K: Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol. 2002, 43 (3): 717-731. 10.1046/j.1365-2958.2002.02779.x.
Article
CAS
PubMed
Google Scholar
Baek JH, Lee SY: Transcriptome analysis of phosphate starvation response in Escherichia coli. J Microbiol Biotechnol. 2007, 17 (2): 244-252.
CAS
PubMed
Google Scholar
Karakousis PC, Williams EP, Bishai WR: Altered expression of isoniazid-regulated genes in drug-treated dormant Mycobacterium tuberculosis. J Antimicrob Chemother. 2008, 61 (2): 323-331. 10.1093/jac/dkm485.
Article
CAS
PubMed
Google Scholar
Ahmad Z, Nuermberger EL, Tasneen R, Pinn ML, Williams KN, Peloquin CA, Grosset JH, Karakousis PC: Comparison of the `Denver regimen against acute tuberculosis in the mouse and guinea pig. J Antimicrob Chemother. 2010, 65 (4): 729-734. 10.1093/jac/dkq007.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lamichhane G, Zignol M, Blades NJ, Geiman DE, Dougherty A, Grosset J, Broman KW, Bishai WR: A postgenomic method for predicting essential genes at subsaturation levels of mutagenesis: application to Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2003, 100 (12): 7213-7218. 10.1073/pnas.1231432100.
Article
PubMed Central
CAS
PubMed
Google Scholar
Klinkenberg LG, Lee JH, Bishai WR, Karakousis PC: The stringent response is required for full virulence of Mycobacterium tuberculosis in guinea pigs. J Infect Dis. 2010, 202 (9): 1397-1404. 10.1086/656524.
Article
PubMed Central
CAS
PubMed
Google Scholar
Thayil SM, Morrison N, Schechter N, Rubin H, Karakousis PC: The role of the novel exopolyphosphatase MT0516 in Mycobacterium tuberculosis drug tolerance and persistence. PLoS One. 2011, 6 (11): e28076-10.1371/journal.pone.0028076.
Article
PubMed Central
CAS
PubMed
Google Scholar
Karakousis PC, Yoshimatsu T, Lamichhane G, Woolwine SC, Nuermberger EL, Grosset J, Bishai WR: Dormancy phenotype displayed by extracellular Mycobacterium tuberculosis within artificial granulomas in mice. J Exp Med. 2004, 200 (5): 647-657. 10.1084/jem.20040646.
Article
PubMed Central
CAS
PubMed
Google Scholar
Manganelli R, Dubnau E, Tyagi S, Kramer FR, Smith I: Differential expression of 10 sigma factor genes in Mycobacterium tuberculosis. Mol Microbiol. 1999, 31 (2): 715-724. 10.1046/j.1365-2958.1999.01212.x.
Article
CAS
PubMed
Google Scholar
Klinkenberg LG, Sutherland LA, Bishai WR, Karakousis PC: Metronidazole lacks activity against Mycobacterium tuberculosis in an in vivo hypoxic granuloma model of latency. J Infect Dis. 2008, 198 (2): 275-283. 10.1086/589515.
Article
PubMed Central
CAS
PubMed
Google Scholar