Hahn DL, Azenabor AA, Beatty WL, Byrne GI: Chlamydia pneumoniae as a respiratory pathogen. Front Biosci. 2002, 7: e66-e76. 10.2741/hahn.
Article
CAS
PubMed
Google Scholar
Paldanius M, Juvonen R, Leinonen M, Bloigu A, Silvennoinen-Kassinen S, Saikku P: Asthmatic persons are prone to the persistence of Chlamydia pneumoniae antibodies. Diagn Microbiol Infect Dis. 2007, 59: 117-122. 10.1016/j.diagmicrobio.2007.04.004.
Article
PubMed
Google Scholar
Sutherland ER, Martin RJ: Asthma and atypical bacterial infection. Chest. 2007, 132: 1962-1966. 10.1378/chest.06-2415.
Article
CAS
PubMed
Google Scholar
Campbell LA, Kuo CC, Grayston JT: Chlamydia pneumoniae and cardiovascular disease. Emerg Infect Dis. 1998, 4: 571-579. 10.3201/eid0404.980407.
Article
CAS
PubMed Central
PubMed
Google Scholar
Grayston JT: Background and current knowledge of Chlamydia pneumoniae and atherosclerosis. J Infect Dis. 2000, 181 (Suppl 3): S402-S410. 10.1086/315596.
Article
CAS
PubMed
Google Scholar
Grayston JT: Chlamydia pneumoniae and atherosclerosis. Clin Infect Dis. 2005, 40: 1131-1132. 10.1086/428739.
Article
PubMed
Google Scholar
Ardeniz O, Gulbahar O, Mete N, Cicek C, Basoglu OK, Sin A, Kokuludag A: Chlamydia pneumoniae arthritis in a patient with common variable immunodeficiency. Ann Allergy Asthma Immunol. 2005, 94: 504-508.
Article
PubMed
Google Scholar
Balin BJ, Little CS, Hammond CJ, Appelt DM, Whittum-Hudson JA, Gerard HC, Hudson AP: Chlamydophila pneumoniae and the etiology of late-onset Alzheimer's disease. J Alzheimers Dis. 2008, 13: 371-380.
CAS
PubMed
Google Scholar
Gerard HC, Dreses-Werringloer U, Wildt KS, Deka S, Oszust C, Balin BJ, Frey WH, Bordayo EZ, Whittum-Hudson JA, Hudson AP: Chlamydophila (Chlamydia)pneumoniae in the Alzheimer's brain. FEMS Immunol Med Microbiol. 2006, 48: 355-366. 10.1111/j.1574-695X.2006.00154.x.
Article
CAS
PubMed
Google Scholar
Contini C, Seraceni S, Cultrera R, Castellazzi M, Granieri E, Fainardi E: Molecular detection of Parachlamydia-like organisms in cerebrospinal fluid of patients with multiple sclerosis. Mult Scler. 2008, 14: 564-566. 10.1177/1352458507085796.
Article
CAS
PubMed
Google Scholar
Fainardi E, Castellazzi M, Seraceni S, Granieri E, Contini C: Under the Microscope: Focus on Chlamydia pneumoniae Infection and Multiple Sclerosis. Curr Neurovasc Res. 2008, 5: 60-70. 10.2174/156720208783565609.
Article
CAS
PubMed
Google Scholar
Munger KL, Peeling RW, Hernan MA, Chasan-Taber L, Olek MJ, Hankinson SE, Hunter D, Ascherio A: Infection with Chlamydia pneumoniae and risk of multiple sclerosis. Epidemiology. 2003, 14: 141-147. 10.1097/00001648-200303000-00006.
PubMed
Google Scholar
Stratton CW, Wheldon DB: Multiple sclerosis: an infectious syndrome involving Chlamydophila pneumoniae. Trends Microbiol. 2006, 14: 474-479. 10.1016/j.tim.2006.09.002.
Article
CAS
PubMed
Google Scholar
Gaydos CA, Summersgill JT, Sahney NN, Ramirez JA, Quinn TC: Replication of Chlamydia pneumoniae in vitro in human macrophages, endothelial cells, and aortic artery smooth muscle cells. Infect Immun. 1996, 64: 1614-1620.
CAS
PubMed Central
PubMed
Google Scholar
Yamaguchi H, Haranaga S, Friedman H, Moor JA, Muffly KE, Yamamoto Y: A Chlamydia pneumoniae infection model using established human lymphocyte cell lines. FEMS Microbiol Lett. 2002, 216: 229-234. 10.1111/j.1574-6968.2002.tb11440.x.
Article
CAS
PubMed
Google Scholar
Yamaguchi H, Friedman H, Yamamoto M, Yasuda K, Yamamoto Y: Chlamydia pneumoniae resists antibiotics in lymphocytes. Antimicrob Agents Chemother. 2003, 47: 1972-1975. 10.1128/AAC.47.6.1972-1975.2003.
Article
CAS
PubMed Central
PubMed
Google Scholar
Gieffers J, van Zandbergen G, Rupp J, Sayk F, Kruger S, Ehlers S, Solbach W, Maass M: Phagocytes transmit Chlamydia pneumoniae from the lungs to the vasculature. Eur Respir J. 2004, 23: 506-510. 10.1183/09031936.04.00093304.
Article
CAS
PubMed
Google Scholar
Zele-Starcevic L, Plecko V, Budimir A, Kalenic S: [Choice of antimicrobial drug for infections caused by Chlamydia trachomatis and Chlamydophila pneumoniae]. Acta Med Croatica. 2004, 58: 329-333.
PubMed
Google Scholar
Misyurina OY, Chipitsyna EV, Finashutina YP, Lazarev VN, Akopian TA, Savicheva AM, Govorun VM: Mutations in a 23S rRNA gene of Chlamydia trachomatis associated with resistance to macrolides. Antimicrob Agents Chemother. 2004, 48: 1347-1349. 10.1128/AAC.48.4.1347-1349.2004.
Article
CAS
PubMed Central
PubMed
Google Scholar
Binet R, Maurelli AT: Frequency of spontaneous mutations that confer antibiotic resistance in Chlamydia spp. Antimicrob Agents Chemother. 2005, 49: 2865-2873. 10.1128/AAC.49.7.2865-2873.2005.
Article
CAS
PubMed Central
PubMed
Google Scholar
Binet R, Maurelli AT: Frequency of development and associated physiological cost of azithromycin resistance in Chlamydia psittaci 6BC and C. trachomatis L2. Antimicrob Agents Chemother. 2007, 51: 4267-4275. 10.1128/AAC.00962-07.
Article
CAS
PubMed Central
PubMed
Google Scholar
Dugan J, Andersen AA, Rockey DD: Functional characterization of IScs605, an insertion element carried by tetracycline-resistant Chlamydia suis. Microbiology. 2007, 153: 71-79. 10.1099/mic.0.29253-0.
Article
CAS
PubMed
Google Scholar
Kutlin A, Kohlhoff S, Roblin P, Hammerschlag MR, Riska P: Emergence of resistance to rifampin and rifalazil in Chlamydophila pneumoniae and Chlamydia trachomatis. Antimicrob Agents Chemother. 2005, 49: 903-907. 10.1128/AAC.49.3.903-907.2005.
Article
CAS
PubMed Central
PubMed
Google Scholar
Rupp J, Solbach W, Gieffers J: Variation in the mutation frequency determining quinolone resistance in Chlamydia trachomatis serovars L2 and D. J Antimicrob Chemother. 2008, 61: 91-94. 10.1093/jac/dkm447.
Article
CAS
PubMed
Google Scholar
Shkarupeta MM, Lazarev VN, Akopian TA, Afrikanova TS, Govorun VM: Analysis of antibiotic resistance markers in Chlamydia trachomatis clinical isolates obtained after ineffective antibiotic therapy. Bull Exp Biol Med. 2007, 143: 713-717. 10.1007/s10517-007-0221-9.
Article
CAS
PubMed
Google Scholar
Gieffers J, Rupp J, Gebert A, Solbach W, Klinger M: First-choice antibiotics at subinhibitory concentrations induce persistence of Chlamydia pneumoniae. Antimicrob Agents Chemother. 2004, 48: 1402-1405. 10.1128/AAC.48.4.1402-1405.2004.
Article
CAS
PubMed Central
PubMed
Google Scholar
Reveneau N, Crane DD, Fischer E, Caldwell HD: Bactericidal activity of first-choice antibiotics against gamma interferon-induced persistent infection of human epithelial cells by Chlamydia trachomatis. Antimicrob Agents Chemother. 2005, 49: 1787-1793. 10.1128/AAC.49.5.1787-1793.2005.
Article
CAS
PubMed Central
PubMed
Google Scholar
Wyrick PB, Knight ST: Pre-exposure of infected human endometrial epithelial cells to penicillin in vitro renders Chlamydia trachomatis refractory to azithromycin. J Antimicrob Chemother. 2004, 54: 79-85. 10.1093/jac/dkh283.
Article
CAS
PubMed
Google Scholar
Migliorini L, Canocchi V, Zanelli G, Valassina M, Cellesi C: Outbreak and persistence of Chlamydia pneumoniae infection in an Italian family. Infez Med. 2003, 11: 157-160.
PubMed
Google Scholar
Mpiga P, Ravaoarinoro M: Chlamydia trachomatis persistence: an update. Microbiol Res. 2006, 161: 9-19. 10.1016/j.micres.2005.04.004.
Article
CAS
PubMed
Google Scholar
Davis CH, Raulston JE, Wyrick PB: Protein disulfide isomerase, a component of the estrogen receptor complex, is associated with Chlamydia trachomatis serovar E attached to human endometrial epithelial cells. Infect Immun. 2002, 70: 3413-3418. 10.1128/IAI.70.7.3413-3418.2002.
Article
CAS
PubMed Central
PubMed
Google Scholar
Hackstadt T, Todd WJ, Caldwell HD: Disulfide-mediated interactions of the chlamydial major outer membrane protein: role in the differentiation of chlamydiae?. J Bacteriol. 1985, 161: 25-31.
CAS
PubMed Central
PubMed
Google Scholar
Raulston JE, Davis CH, Paul TR, Hobbs JD, Wyrick PB: Surface accessibility of the 70-kilodalton Chlamydia trachomatis heat shock protein following reduction of outer membrane protein disulfide bonds. Infect Immun. 2002, 70: 535-543. 10.1128/IAI.70.2.535-543.2002.
Article
CAS
PubMed Central
PubMed
Google Scholar
Mannonen L, Kamping E, Penttila T, Puolakkainen M: IFN-gamma induced persistent Chlamydia pneumoniae infection in HL and Mono Mac 6 cells: characterization by real-time quantitative PCR and culture. Microb Pathog. 2004, 36: 41-50. 10.1016/j.micpath.2003.09.001.
Article
CAS
PubMed
Google Scholar
Shaw EI, Dooley CA, Fischer ER, Scidmore MA, Fields KA, Hackstadt T: Three temporal classes of gene expression during the Chlamydia trachomatis developmental cycle. Mol Microbiol. 2000, 37: 913-925. 10.1046/j.1365-2958.2000.02057.x.
Article
CAS
PubMed
Google Scholar
Wilson DP, Mathews S, Wan C, Pettitt AN, McElwain DL: Use of a quantitative gene expression assay based on micro-array techniques and a mathematical model for the investigation of chlamydial generation time. Bull Math Biol. 2004, 66: 523-537. 10.1016/j.bulm.2003.09.001.
Article
CAS
PubMed
Google Scholar
Hybiske K, Stephens RS: Mechanisms of host cell exit by the intracellular bacterium Chlamydia. Proc Natl Acad Sci USA. 2007, 104: 11430-11435. 10.1073/pnas.0703218104.
Article
CAS
PubMed Central
PubMed
Google Scholar
Raulston JE: Response of Chlamydia trachomatis serovar E to iron restriction in vitro and evidence for iron-regulated chlamydial proteins. Infect Immun. 1997, 65: 4539-4547.
CAS
PubMed Central
PubMed
Google Scholar
Bailey L, Gylfe A, Sundin C, Muschiol S, Elofsson M, Nordstrom P, Henriques-Normark B, Lugert R, Waldenstrom A, Wolf-Watz H, Bergstrom S: Small molecule inhibitors of type III secretion in Yersinia block the Chlamydia pneumoniae infection cycle. FEBS Lett. 2007, 581: 587-595. 10.1016/j.febslet.2007.01.013.
Article
CAS
PubMed
Google Scholar
Shivshankar P, Lei L, Wang J, Zhong G: Rottlerin inhibits chlamydial intracellular growth and blocks chlamydial acquisition of sphingolipids from host cells. Appl Environ Microbiol. 2008, 74: 1243-1249. 10.1128/AEM.02151-07.
Article
CAS
PubMed Central
PubMed
Google Scholar
Wolf K, Betts HJ, Chellas-Gery B, Hower S, Linton CN, Fields KA: Treatment of Chlamydia trachomatis with a small molecule inhibitor of the Yersinia type III secretion system disrupts progression of the chlamydial developmental cycle. Mol Microbiol. 2006, 61: 1543-1555. 10.1111/j.1365-2958.2006.05347.x.
Article
CAS
PubMed Central
PubMed
Google Scholar
Yan Y, Silvennoinen-Kassinen S, Tormakangas L, Leinonen M, Saikku P: Selective cyclooxygenase inhibitors prevent the growth of Chlamydia pneumoniae in HL cells. Int J Antimicrob Agents. 2008, 32: 78-83. 10.1016/j.ijantimicag.2008.02.021.
Article
PubMed
Google Scholar
Coombes BK, Mahony JB: Identification of MEK- and phosphoinositide 3-kinase-dependent signalling as essential events during Chlamydia pneumoniae invasion of HEp2 cells. Cell Microbiol. 2002, 4: 447-460. 10.1046/j.1462-5822.2002.00203.x.
Article
CAS
PubMed
Google Scholar
Muschiol S, Bailey L, Gylfe A, Sundin C, Hultenby K, Bergstrom S, Elofsson M, Wolf-Watz H, Normark S, Henriques-Normark B: A small-molecule inhibitor of type III secretion inhibits different stages of the infectious cycle of Chlamydia trachomatis. Proc Natl Acad Sci USA. 2006, 103: 14566-14571. 10.1073/pnas.0606412103.
Article
CAS
PubMed Central
PubMed
Google Scholar
Johnson DL, Mahony JB: Chlamydophila pneumoniae PknD exhibits dual amino acid specificity and phosphorylates Cpn0712, a putative type III secretion YscD homolog. J Bacteriol. 2007, 189: 7549-7555. 10.1128/JB.00893-07.
Article
CAS
PubMed Central
PubMed
Google Scholar
Mahony JB, Johnson DL, Coombes BK, Song X: Expression of a Novel Protein Kinase Gene (Cpn0148) During the Replication Cycle of Chlamydia pneumoniae. Chlamydial Infections, International Symposium on Human Chlamydial Infections. Edited by: Schachter J, Christiansen G, Clarke I. 2002, Antalya, Turkey. International Chlamydia Symposium, San Francisco, CA, 10: 559-562.
Google Scholar
Stone CB, Johnson DL, Bulir DC, Gilchrist JD, Mahony JB: Characterization of the putative type III secretion ATPase CdsN (Cpn0707) of Chlamydophila pneumoniae. J Bacteriol. 2008, 190: 6580-6588. 10.1128/JB.00761-08.
Article
CAS
PubMed Central
PubMed
Google Scholar
Su H, McClarty G, Dong F, Hatch GM, Pan ZK, Zhong G: Activation of Raf/MEK/ERK/cPLA2 signaling pathway is essential for chlamydial acquisition of host glycerophospholipids. J Biol Chem. 2004, 279: 9409-9416. 10.1074/jbc.M312008200.
Article
CAS
PubMed
Google Scholar
Gurniak CB, Berg LJ: Murine JAK3 is preferentially expressed in hematopoietic tissues and lymphocyte precursor cells. Blood. 1996, 87: 3151-3160.
CAS
PubMed
Google Scholar
Rane SG, Reddy EP: JAK3: a novel JAK kinase associated with terminal differentiation of hematopoietic cells. Oncogene. 1994, 9: 2415-2423.
CAS
PubMed
Google Scholar
Tortolani PJ, Lal BK, Riva A, Johnston JA, Chen YQ, Reaman GH, Beckwith M, Longo D, Ortaldo JR, Bhatia K, McGrath I, Kehrl J, Tuscano J, McVicar DW, O'Shea JJ: Regulation of JAK3 expression and activation in human B cells and B cell malignancies. J Immunol. 1995, 155: 5220-5226.
CAS
PubMed
Google Scholar
Lad SP, Fukuda EY, Li J, de la Maza LM, Li E: Up-regulation of the JAK/STAT1 signal pathway during Chlamydia trachomatis infection. J Immunol. 2005, 174: 7186-7193.
Article
CAS
PubMed
Google Scholar
Bain J, McLauchlan H, Elliott M, Cohen P: The specificities of protein kinase inhibitors: an update. Biochem J. 2003, 371: 199-204. 10.1042/BJ20021535.
Article
CAS
PubMed Central
PubMed
Google Scholar
Bain J, Plater L, Elliott M, Shpiro N, Hastie CJ, McLauchlan H, Klevernic I, Arthur JS, Alessi DR, Cohen P: The selectivity of protein kinase inhibitors: a further update. Biochem J. 2007, 408: 297-315. 10.1042/BJ20070797.
Article
CAS
PubMed Central
PubMed
Google Scholar
Davies SP, Reddy H, Caivano M, Cohen P: Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J. 2000, 351: 95-105. 10.1042/0264-6021:3510095.
Article
CAS
PubMed Central
PubMed
Google Scholar
Wray C, Sojka WJ: Experimental Salmonella typhimurium infection in calves. Res Vet Sci. 1978, 25: 139-143.
CAS
PubMed
Google Scholar
Mohler WA, Charlton CA, Blau HM: Spectrophotometric quantitation of tissue culture cell number in any medium. Biotechniques. 1996, 21: 260-2, 264, 266.
CAS
PubMed
Google Scholar