Hiraga S: Chromosome and plasmid partition in Escherichia coli. Annu Rev Biochem. 1992, 61: 283-306.
Article
CAS
PubMed
Google Scholar
Koonin EV: A superfamily of ATPases with diverse functions containing either classical or deviant ATP-binding motif. J Mol Biol. 1993, 229: 1165-1174.
Article
CAS
PubMed
Google Scholar
Yamaichi Y, Niki H: Active segregation by the Bacillus subtilis partitioning system in Escherichia coli. Proc Natl Acad Sci. 2000, 97: 14656-14661.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mori H, Kondo A, Ohshima A, Ogura T, Hiraga S: Structure and function of the F ÿplasmid genes essential for partitioning. J Mol Biol. 1986, 192: 1-15.
Article
CAS
PubMed
Google Scholar
Austin S, Abeles AL: Partitioning of unit copy miniplasmids to daughter cells. II. The partititon regions of miniplasmid P1 encodes an essential protein and a centromere-like site at which it acts. J Mol Biol. 1983, 169: 373-387.
Article
CAS
PubMed
Google Scholar
Gerdes K, Moller-Jensen J, Bugge-Jensen R: Plasmid and chromosome partitioning: surprises from phylogeny. Mol Microbiol. 2000, 37: 455-466.
Article
CAS
PubMed
Google Scholar
Friedman SA, Austin SJ: The P1 plasmid-partition system synthesizes two essential proteins from an autoregulated operon. Plasmid. 1988, 19: 103-112.
Article
CAS
PubMed
Google Scholar
ÿDam Mikkelsen N, Gerdes K: Sok antisense RNA from plasmid R1 is functionally inactivated by RNase E and polyadenylated by poly(A) polymerase I. Mol Microbiol. 1997, 26: 311-320.
Article
Google Scholar
Dubarry N, Pasta F, Lane D: ParABS systems of the four replicons of Burkholderia cenocepacia : new chromosome centromeres confer partition specificity. J Bacteriol. 2006, 188: 1489-1496.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gal-Mor O, Borovok I, Av-Gay Y, Cohen G, Aharonowitz Y: Gene organization in the trxA/B-oriC region of the Streptomyces coelicolor chromosome and comparison with other eubacteria. Gene. 1998, 217: 83-90.
Article
CAS
PubMed
Google Scholar
Lin DC, Grossman AD: Identification and characterization of a bacterial chromosome partitioning site. Cell. 1998, 92: 675-685.
Article
CAS
PubMed
Google Scholar
Jakimowicz D, Chater K, Zakrzewska-Czerwinska J: The ParB protein of Streptomyces coleicolor A3(2) recognizes a cluster of parS sequences within the origin-proximal region of the lineal chromosome. Mol Microbiol. 2002, 45: 1365-1377.
Article
CAS
PubMed
Google Scholar
Mohl DA, Gober JW: Cell cycle-dependent polar localization of chromosome partitioning proteins in Caulobacter crecentus. Cell. 1997, 88: 675-684.
CAS
PubMed
Google Scholar
Ireton K, Gunther NW, Grossman AD: spo0J is required for normal chromosome segregation as well as the initiation of sporulation in Bacillus subtilis. J Bacteriol. 1994, 176: 5320-5329.
PubMed Central
CAS
PubMed
Google Scholar
Kim HJ, Calcutt MJ, Schmidt FJ, Chater KF: Partitioning of the linear chromosome during sporulation of Streptomyces coelicolor A3(2) involved an oriC-linked parAB locus. J Bacteriol. 2000, 182: 1313-1320.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lewis RA, Bignell CR, Zeng W, Jones AC, Thomas CM: Chromosome loss from par mutants of Pseudomonas putida depends on growth medium and phase of growth. Microbiology. 2002, 148: 537-548.
Article
CAS
PubMed
Google Scholar
Sharpe ME, Errington J: The Bacillus subtilis soj-spo0J locus is required for a centromere-like function involved in prespore chromosome partitioning. Mol Microbiol. 1996, 21: 501-509.
Article
CAS
PubMed
Google Scholar
Godfrin-Estevenon AM, Pasta F, Lane D: The parAB gene products of Pseudomonas putida exhibit partition activity in both P. putida and Escherichia coli. Mol Microbiol. 2002, 43: 39-49.
Article
CAS
PubMed
Google Scholar
Mohl DA, Easter J, Gober JW: The chromosome partitioning protein, ParB, is required for citokinesis in Caulobacter crescentus. Mol Microbiol. 2001, 42: 741-755.
Article
CAS
PubMed
Google Scholar
Ogura Y, Ogasawara N, Harry EJ, Moriya S: Increasing the ratio of Soj to Spo0J promotes replication initiation in Bacillus subtilis. J Bacteriol. 2003, 185: 6316-6324.
Article
PubMed Central
CAS
PubMed
Google Scholar
Graumann PL: Cytoskeletal elements in bacteria. Curr Opin Microbiol. 2004, 7: 565-571.
Article
CAS
PubMed
Google Scholar
Gitai Z, Dye NA, Reisenauer A, Wachi M, Shapiro L: MreB actin mediated segregation of a specific region of a bacterial chromosome. Cell. 2005, 120: 329-341.
Article
CAS
PubMed
Google Scholar
World Health Organization (WHO): Tuberculosis (TB). [http://www.who.int/tb/en/]
Cole ST, Brosh R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, other authors: Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998, 393: 537-544.
Article
CAS
PubMed
Google Scholar
Gomez M, Smith I: Determinants of mycobacterial gene expression. Molecular genetics of Mycobacteria. Edited by: Hatfull GF, Jacobs WR, Jr. 2000, Washington, DC. American Society of Microbiology, 111-129.
Google Scholar
Smith I, Bishai WR, Nagaraja V: Control of mycobacterial transcription. Tuberculosis and the tubercle bacillus. Edited by: Cole ST, Eisenach D, McMurray DN, Jacobs WR, Jr. 2005, Washington, DC. American Society of Microbiology, 219-231.
Chapter
Google Scholar
Unniraman S, Chatterji M, Nagaraja V: DNA gyrase genes in Mycobacterium tuberculosis : a single operon driven by multiple promoters. J Bacteriol. 2002, 184: 5449-5456.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bannatine JP, Barletta RG, Thoen CO, Andrews RE: Identification of Mycobacterium paratuberculosis gene expression signals. Microbiology. 1997, 143: 921-928.
Article
Google Scholar
The new multi-microbial genome browser (GenoList): GenoList genome browser. [http://genolist.pasteur.fr/]
J. Craig Venter Institute: Comprehensive microbial resource: Mycobacterium smegmatis mc2 genome page. [http://cmr.tigr.org/cgi-bin/CMR/GenomePage.cgi?org=gms]
Hayes F, Barilla D: The bacterial segrosome: a dynamic nucleoprotein machine for DNA trafficking and segregation. Nature Rev. 2006, 4 (2): 133-143.
CAS
Google Scholar
Hayes F, Radnedge L, Davis MA, Austin SJ: The homologous operons for P1 and P7 plasmid partition are autoregulated from dissimilar operator sites. Mol Microbiol. 1994, 11: 249-260.
Article
CAS
PubMed
Google Scholar
Manganelli R, Voskuil MI, Schoolnik GK, Smith I: The Mycobacterium tuberculosis ECF sigma factor sigmaE: role in global gene expression and survival in macrophages. Mol Microbiol. 2001, 41: 423-437.
Article
CAS
PubMed
Google Scholar
Manganelli R, Voskuil MI, Schoolnik GK, Dubnau E, Gomez M, Smith I: Role of the extracytoplasmic-function sigma factor sigma (H) in Mycobacterium tuberculosis global gene expression. Mol Microbiol. 2002, 45: 365-374.
Article
CAS
PubMed
Google Scholar
Geiman DE, Kaushal D, Ko C, Tyagi S, Manabe YC, Schroeder BG, Fleischmann RD, Morrison NE, Converse PJ, Chen P, Bishai WR: Attenuation of late-stage disease in mice infected by the Mycobacterium tuberculosis mutant lacking the SigF alternate sigma factor and identification of SigF-dependent genes by microarray analysis. Infect Immun. 2004, 72: 1733-1745.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sun R, Converse PJ, Ko C, Tyagi S, Morrison NE, Bishai WR: Mycobacterium tuberculosis ECF sigma factor sigC is required for lethality in mice and for the conditional expression of a defined gene set. Mol Microbiol. 2004, 52: 25-38.
Article
CAS
PubMed
Google Scholar
Raman S, Hazra R, Dascher CC, Husson RN: Transcription regulation by the Mycobacterium tuberculosis alternative sigma factor SigD and its role in virulence. J Bacteriol. 2004, 186: 6605-6616.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dainese E, Rodrigue S, Delogu G, Provvedi R, Laflamme L, Brzezinski R, Fadda G, Smith I, Gaudreau L, Palù G, Manganelli R: Posttranslational regulation of Mycobacterium tuberculosis extracytoplasmic-function sigma factor σ L and roles in virulence and in global regulation of gene expression. Infect Immun. 2006, 74: 2457-2461.
Article
PubMed Central
CAS
PubMed
Google Scholar
Agarwal N, Woolwine SC, Tyagi S, Bishai WR: Characterization of the Mycobacterium tuberculosis sigma factor SigM by assessment of virulence and identification of SigM-dependent genes. Infect Immun. 2007, 75: 452-461.
Article
PubMed Central
CAS
PubMed
Google Scholar
Betts JC, Lukey PT, Robb LC, McAdam RA, Duncan K: Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol. 2002, 43: 717-731.
Article
CAS
PubMed
Google Scholar
Manganelli R, Dubnau E, Tyagi S, Kramer FR, Smith I: Differential expression of 10 sigma factor genes in Mycobacterium tuberculosis. Mol Microbiol. 1999, 31: 715-724.
Article
CAS
PubMed
Google Scholar
Voskuil MI, Visconti KC, Schoolnik GK: Mycobacterium tuberculosis gene expression during adaptation to stationary phase and low-oxygen dormancy. Tuberculosis. 2004, 84: 218-
Article
CAS
PubMed
Google Scholar
Funnel BE: Mini-P1 plasmid partitioning: excess ParB protein destabilizes plasmids containing the centromere parS. J Bacteriol. 1988, 170: 954-960.
Google Scholar
Kusukawa N, Mori H, Kondo A, Hiraga S: Partitioning of the F plasmid: overproduction of an essential protein for partition inhibits plasmid maintenance. Mol Gen Genet. 1987, 208: 365-372.
Article
CAS
PubMed
Google Scholar
Figge RM, Easter J, Gober JW: Productive interaction between the chromosome partitioning proteins, ParA and ParB, is required for the progression of the cell cycle in Caulobacter crecentus. Mol Microbiol. 2003, 47: 1225-1237.
Article
CAS
PubMed
Google Scholar
Snapper SB, Melton RE, Mustapha S, Kieser T, Jacobs WR: Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol Microbiol. 1990, 4: 1911-1919.
Article
CAS
PubMed
Google Scholar
Valdivia RH, Hromockyj AE, Monarck D, Ramakrishnan L, Falkow S: Applications for the green fluorescent protein (GFP) in the study of host-pathogen interactions. Gene. 1996, 173: 47-52.
Article
CAS
PubMed
Google Scholar
Salazar L, Guerrero E, Casart Y, Turcios L, Bartoli F: Transcription analysis of the dnaA gene and oriC region of the chromosome of Mycobacterium smegmatis and Mycobacterium bovis BCG, and its regulation by the DnaA protein. Microbiology. 2003, 149: 773-784.
Article
CAS
PubMed
Google Scholar
Movahedzadeh F, Gonzalez-Y-Merchand JA, Cox RA: Transcription start-site mapping. Mycobacterium tuberculosis protocols, Methods in Molecular Medicine. Edited by: Parish T, Stoker NG. 2001, Humana Press, Totowa, NJ, 54: 105-124.
Chapter
Google Scholar
Shi L, Jung YJ, Tyagi S, Gennaro ML, North RJ: Expression of Th1-mediated immunity in mouse lungs induces a Mycobacterium tuberculosis transcription pattern characteristic of nonreplicating persistence. Proc Natl Acad Sci. 2003, 100: 241-246.
Article
PubMed Central
CAS
PubMed
Google Scholar