Armitage JP: Bacterial tactic response. Adv Microb Physiol. 1999, 41: 229-289.
Article
CAS
PubMed
Google Scholar
Alexandre G, Zhulin IB: More than one way to sense chemicals. J Bacteriol. 2001, 183: 4681-4686. 10.1128/JB.183.16.4681-4686.2001.
Article
PubMed Central
CAS
PubMed
Google Scholar
Falke JJ, Bass RB, Butler SL, Chervitz SA, Danielson MA: The two-component signaling pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases and adaptation enzymes. Annu Rev Cell Dev Biol. 1997, 13: 457-512. 10.1146/annurev.cellbio.13.1.457.
Article
PubMed Central
CAS
PubMed
Google Scholar
Manson MD, Armitage JP, Hoch JA, Macnab RM: Bacterial locomotion and signal transduction. J Bacteriol. 1998, 180: 1009-1022.
PubMed Central
CAS
PubMed
Google Scholar
Boyd A, Kendall K, Simon MI: Structure of the serine chemoreceptor in Escherichia coli. Nature. 1983, 301: 623-626.
Article
CAS
PubMed
Google Scholar
Alam M, Hazelbauer GL: Structural features of methyl-accepting taxis proteins conserved between archaebacteria and eubacteria revealed by antigenic cross-reaction. J Bacteriol. 1991, 173: 5837-5842.
PubMed Central
CAS
PubMed
Google Scholar
Zhulin IB: The superfamily of chemotaxis transducers: from physiology to genomics and back. Adv Microb Physiol. 2001, 45: 157-198.
Article
CAS
PubMed
Google Scholar
Currier WW, Strobel GA: Chemotaxis of Rhizobium spp. to a glycoprotein produced by birdsfoot trefoil roots. Science. 1977, 196: 434-435.
Article
CAS
PubMed
Google Scholar
Ames P, Bergman K: Competitive advantage provided by bacterial motility in the formation of nodules by Rhizobium meliloti. J Bacteriol. 1981, 148: 728-729.
PubMed Central
CAS
PubMed
Google Scholar
Gulash M, Ames P, Larosiliere RC, Bergman K: Rhizobia are attracted to localized sites on legume roots. Appl Environ Microbiol. 1984, 48: 149-152.
PubMed Central
CAS
PubMed
Google Scholar
Caetano-Anollés G, Wall LG, Micheli ATD, Macchi EM, Bauer WD, Favelukes G: Role of motility and chemotaxis in efficiency of nodulation by Rhizobium meliloti. Plant Physiol. 1988, 86: 1228-1235.
Article
PubMed Central
PubMed
Google Scholar
Caetano-Anollés G, Wrobel-Boerner E, Bauer WD: Growth and movement of spot inoculated Rhizobium meliloti on the root surface of alfalfa. Plant Physiol. 1992, 98: 1181-1189.
Article
PubMed Central
PubMed
Google Scholar
Munoz Aguilar JM, Ashby AM, Richards AJM, Loake GJ, Watson MD, Shaw CH: Chemotaxis of Rhizobium leguminosarum biovar phaseoli towards flavonoid inducers of symbiotic nodulation genes. J Gen Microbiol. 1988, 134: 2741-2746.
CAS
Google Scholar
Bauer WD, Caetano-Anollés G: Chemotaxis, induced gene expression and competitiveness in the rhizosphere. Plant Soil. 1990, 129: 45-52.
Article
CAS
Google Scholar
Dharmatilake AJ, Bauer WD: Chemotaxis of Rhizobium meliloti towards nodulation gene-inducing compounds from alfalfa roots. Appl Environ Microbiol. 1992, 58: 1153-1158.
PubMed Central
CAS
PubMed
Google Scholar
Yost CK, Rochepeau P, Hynes MF: Rhizobium leguminosarum contains a group of genes that appear to code for methyl-accepting chemotaxis proteins. Microbiology. 1998, 144: 1945-1956.
Article
CAS
PubMed
Google Scholar
Van Rhijn P, Vanderleyden J: The Rhizobium-plant symbiosis. Microbiol Rev. 1995, 59: 124-142.
PubMed Central
CAS
PubMed
Google Scholar
Baldani JL, Weaver RW, Hynes MF, Eardly BD: Utilization of carbon substrates, electrophorectic enzyme patterns and symbiotic performance of plasmid cured rhizobia. Appl Environ Microbiol. 1992, 58: 2308-2314.
PubMed Central
CAS
PubMed
Google Scholar
Brom S, García-de los Santos A, Stepkowsky T, Flores M, Dávila G, Romero D, Palacios R: Different plasmids of Rhizobium leguminosarum bv. phaseoli are required for optimal symbiotic performance. J Bacteriol. 1992, 174: 5183-5189.
PubMed Central
CAS
PubMed
Google Scholar
Moënne-Loccoz , Weaver RW: Plasmids influence growth of rhizobia in the rhizosphere of clover. Soil Biol Biochem. 1995, 27: 1001-1004. 10.1016/0038-0717(95)00035-D.
Article
Google Scholar
García-de los Santos A, Brom S, Romero D: Rhizobium plasmids in bacteria-legume interactions. World J Microbiol & Biotech. 1996, 12: 119-125.
Article
Google Scholar
Mercado-Blanco J, Toro N: Plasmids in Rhizobia: the role of nonsymbiotic plasmids. Mol Plant-Microbe Interact. 1996, 9: 535-545.
Article
CAS
Google Scholar
Rochepeau P, Selinger LB, Hynes MF: Transposon-like structure of a new plasmid-encoded restriction-modification system in Rhizobium leguminosarum VF39SM. Mol Gen Genet. 1997, 256: 387-396. 10.1007/s004380050582.
Article
CAS
PubMed
Google Scholar
Oresnik IJ, Pacarynuk LA, O'Brien SAP, Yost CK, Hynes MF: Plasmid-encoded catabolic loci in Rhizobium leguminosarum bv. trifolii. Evidence for a plant-inducible rhamnose locus involved in competition for nodulation. Mol Plant Microbe Interact. 1998, 11: 1175-1185.
Article
CAS
Google Scholar
Brom S, García-de los Santos A, Cervantes L, Palacios R, Romero D: In Rhizobium etli symbiotic plasmid transfer, nodulation competitivity and cellular growth require interaction among different replicons. Plasmid. 2000, 44: 34-43. 10.1006/plas.2000.1469.
Article
CAS
PubMed
Google Scholar
Brito B, Palacios J-M, Ruiz-Argüeso T, Imperial J: Identification of a gene for a chemoreceptor of the methyl-accepting type in the symbiotic plasmid of Rhizobium leguminosarum bv. viciae UPM791. Biochim Biophys Acta. 1996, 1308: 7-11. 10.1016/0167-4781(96)00083-8.
Article
PubMed
Google Scholar
Freiberg C, Fellay R, Bairoch A, Broughton WJ, Rosenthal A, Perret X: Molecular basis of symbiosis between Rhizobium and legumes. Nature. 1997, 387: 394-401. 10.1038/387394a0.
Article
CAS
PubMed
Google Scholar
Galibert F, Finan TM, Long SR, Pühler A, Abola P, Ampe F, Barloy-Hubler F, Barnett MJ, becker A, Boistard P, Bothe G, Bountry M, Bowser L, Buhrmester J, Cadieu E, Capela D, Chain P, Cowie A, Davis RW, Dreano S, Federspiel NA, Fisher RF, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernandez-Lucas I, Hong A, Huizar L, Hyman RW, Jones T, Kahn D, Kahn ML, Kalman S, Keating DH, Kiss E, Komp C, Lelaure V, Masuy D, Palm C, Peck MC, Pohl TM, Portetell D, Purnell B, Ramsperger U, Surzycki R, Thebault P, Vandenbol M, Vorholter FJ, Weidner S, Wells DH, Wong K, Yeh KC, Batut J: The composite genome of the legume symbiont Sinorhizobium meliloti. Science. 2001, 293: 668-72.
Article
CAS
PubMed
Google Scholar
Carlos MG, von Heigne G: TopPred II: an improved software for membrane protein structure predictions. Comput Appli Biosci. 1994, 10: 685-686.
Google Scholar
Krogh A, Larsson B, von Heijne G, Sonnhammer EL: Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001, 305: 567-580. 10.1006/jmbi.2000.4315.
Article
CAS
PubMed
Google Scholar
Hosie AHF, Allaway D, Poole PS: A monocarboxylate permease of Rhizobium leguminosarum is the first member of a new subfamily of transporters. J Bacteriol. 2002, 184: 5436-5448. 10.1128/JB.184.19.5436-5448.2002.
Article
PubMed Central
CAS
PubMed
Google Scholar
Aravind L, Ponting CP: The cytoplasmic helical linker domain of receptor histidine kinase and methyl-accepting proteins is common to many prokaryotic signaling proteins. Fems Microbiol Lett. 1999, 176: 111-116. 10.1016/S0378-1097(99)00197-4.
Article
CAS
PubMed
Google Scholar
Wood DW, Setubal JC, Kaul R, Monks D, Chen I, Wood GE, Chen Y, Woo L, Kitajima JP, Okura VK, Almeida NF, Zhou Y, Bovee D, Chapman P, Clendenning J, Deatherage G, Gillet W, Grant C, Guenthner D, Kutyavin T, Levy R, Li M, McClelland E, Palmieri A, Raymond C, Rouse G, Saenphimmachak C, Wu Z, Gordon D, Eisen JA, Paulsen I, Karp P, Romero P, Zhang S, Yoo H, Tao Y, Biddle P, Jung M, Krespan W, Perry M, Gordon-Kamm B, Liao L, Kim S, Hendrick C, Zhao Z, Dolan M, Tingey SV, Tomb J, Gordon MP, Olson MV, Nester EW: The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science. 2001, 294: 2317-2323. 10.1126/science.1066804.
Article
CAS
PubMed
Google Scholar
Quandt J, Hynes MF: Versatile suicide vectors which allow direct selection for gene replacement in gram-negative bacteria. Gene. 1993, 127: 15-21. 10.1016/0378-1119(93)90611-6.
Article
CAS
PubMed
Google Scholar
Yost CK: Characterization of Rhizobium leguminosarum genes homologous to chemotaxis chemoreceptors. Ph.D.Thesis, University of Calgary, Calgary, Alberta. 1998
Google Scholar
Parke D, Rivelli M, Ornston LN: Chemotaxis to aromatic and hydroaromatic acids: comparisons of Bradyrhizobium japonicum and Rhizobium trifolii. J Bacteriol. 1985, 163: 417-422.
PubMed Central
CAS
PubMed
Google Scholar
Parke D, Ornston LN: Nutritional diversity of Rhizobiaceae revealed by auxanography. J Gen Microbiol. 1984, 130: 1743-1750.
CAS
Google Scholar
Stowers MD: Carbon metabolism in Rhizobium species. Annu Rev Microbiol. 1985, 39: 89-108. 10.1146/annurev.mi.39.100185.000513.
Article
CAS
PubMed
Google Scholar
Alexandre G, Greer SE, Zhulin IB: Energy taxis is the dominant behavior in Azospirillum brasilense. J Bacteriol. 2000, 182: 6042-6048. 10.1128/JB.182.21.6042-6048.2000.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gauden DE, Armitage JP: Electron transport-dependent taxis in Rhodobacter sphaeroides. J Bacteriol. 1995, 177: 5853-5859.
PubMed Central
CAS
PubMed
Google Scholar
Oresnik IJ, Twelker S, Hynes MF: Cloning and characterization of a Rhizobium leguminosarum gene encoding a bacteriocin with similarities to RTX toxins. Appl Environ Microbiol. 1999, 65: 2833-2840.
PubMed Central
CAS
PubMed
Google Scholar
Venter AP, Twelker S, Oresnik IJ, Hynes MF: Analysis of the genetic region encoding a novel rhizobiocin from Rhizobium leguminosarum bv. viciae strain 306. Can J Microbiol. 2001, 47: 495-502. 10.1139/cjm-47-6-495.
Article
CAS
PubMed
Google Scholar
Beringer JE: R factor transfer in Rhizobium leguminosarum. J Gen Microbiol. 1974, 84: 188-198.
Article
CAS
PubMed
Google Scholar
Sambrook J, Fitsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, Cold Spring Harbor Press. 1989
Google Scholar
Vincent JM: A Manual for the Practical Study of Root-nodule Bacteria (IBP handbook no. 15). Oxford, Blackwell Scientific Publications. 1970
Google Scholar
Eckhardt T: A rapid method for the identification of plasmid deoxyribonucleic acid in bacteria. Plasmid. 1978, 1: 584-588.
Article
CAS
PubMed
Google Scholar
Hynes MF, Simon R, Pühler A: The development of plasmid-free strains of Agrobacterium tumefaciens by using incompatibility with a Rhizobium meliloti plasmid to eliminate pATC58. Plasmid. 1985, 13: 99-105.
Article
CAS
PubMed
Google Scholar
Hynes MF, McGregor NF: Two plasmids other than the nodulation plasimd are necessary for formation of nitrogen-fixing nodules by Rhizobium leguminosarum. Mol Microbiol. 1990, 4: 567-574.
Article
CAS
PubMed
Google Scholar
Altschul S, Madden T, Schäffer A, Zhang J, Zhang Z, Miller W, Lipman D: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997, 25: 3389-3402. 10.1093/nar/25.17.3389.
Article
PubMed Central
CAS
PubMed
Google Scholar
Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22: 4673-4680.
Article
PubMed Central
CAS
PubMed
Google Scholar
Simon R, Priefer U, Pühler A: A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Bio/Technology. 1983, 1: 784-791.
Article
CAS
Google Scholar
Priefer UB: Genes involved in lipopolysaccharide production and symbiosis are clustered on the chromosome of Rhizobium leguminosarum biovar viciae VF39. J Bacteriol. 1989, 171: 6161-6168.
PubMed Central
CAS
PubMed
Google Scholar
Hynes MF, Quandt J, O'Connell MP, Pühler A: Direct selection for curing and deletion of Rhizobium plasmids using transposons carrying the Bacillus subtilis sacB gene. Gene. 1989, 78: 111-120. 10.1016/0378-1119(89)90319-3.
Article
CAS
PubMed
Google Scholar
Lamb JW, Hombrecher G, Johnston AWB: Plasmid-determined nodulation and nitrogen-fixation abilities in Rhizobium phaseoli. Mol Gen Genet. 1982, 186: 449-452.
Article
CAS
Google Scholar
Finan TM, Wood JM, Jordan DC: Succinate transport in Rhizobium leguminosarum. J Bacteriol. 1981, 148: 193-202.
PubMed Central
CAS
PubMed
Google Scholar
Poole PS, Schofield NA, Reid CJ, Drew EM, Walshaw DL: Identification of chromosomal genes located downstream of dctD that affect the requirement for calcium and the lipopolysaccharide layer of Rhizobium leguminosarum. Microbiol. 1994, 140: 2797-2809.
Article
CAS
Google Scholar
Moënne-Loccoz Y, Sen D, Krause ES, Weaver RW: Plasmid profiles of rhizobia used in inoculants and isolated from clover fields. Agron J. 1994, 86: 117-121.
Article
Google Scholar
Fellay R, Frey J, Krisch H: Interposon mutagenesis of soil and water bacteria: a family of DNA fragments designed for in vitro insertional mutagenesis of gram-negative bacteria. Gene. 1987, 52: 147-154. 10.1016/0378-1119(87)90041-2.
Article
CAS
PubMed
Google Scholar
Schweizer HP: Two plasmids, X1918 and Z1918 for easy recovery of the xylE and lacZ reporter genes. Gene. 1918, 134: 89-91. 10.1016/0378-1119(93)90178-6.
Article
Google Scholar
Rice MS, Dahlquist FW: Sites of deamidation and methylation in Tsr, a bacterial chemotaxis sensory transducer. J Biol Chem. 1991, 266: 9746-9753.
CAS
PubMed
Google Scholar
Kim KK, Yokota H, Kim S-H: Four-helical-bundle structure of the cytoplasmic domain of a serine chemotaxis receptor. Nature. 1999, 400: 787-792. 10.1038/23512.
Article
CAS
PubMed
Google Scholar