Suthar S: Bioremediation of Agricultural Wastes through Vermicomposting. Biorem. J. 2009, 13 (1): 21-28. 10.1080/10889860802690513.
Article
CAS
Google Scholar
Rao PV, Baral SS, Dey R, Mutnuri S: Biogas generation potential by anaerobic digestion for sustainable energy development in India. Renew Sustain Energy Rev. 2010, 14 (7): 2086-2094. 10.1016/j.rser.2010.03.031.
Article
CAS
Google Scholar
Adani F, Genevini PL, Gasperi F, Zorzi G: Organic matter evolution index (OMEI) as a measure of composting efficiency. Comp Sci & Utiliz. 1997, 5 (2): 53-62.
Article
Google Scholar
Weltzien HC: Biocontrol of foliar fungal diseases with compost extracts. Microbial Ecology of Leaves. Edited by: Andrews JH, Hirano S. 1991, New York, NY, USA: Springer-Verlag, 430-450.
Chapter
Google Scholar
Tiquia SM, Richard TL, Honeyman MS: Effects of windrow turning and seasonal temperatures on composting hog manure from hoop structures. Environ Technol. 2000, 21 (9): 1037-1046. 10.1080/09593332108618048.
Article
CAS
Google Scholar
Fracchia L, Dohrmann AB, Martinotti MG, Tebbe CC: Bacterial diversity in finished compost and vermicompost: differences revealed by cultivation-independent analyses of PCR-amplified 16S rRNA genes. Appl Microbiol Biotechnol. 2006, 71 (6): 942-952. 10.1007/s00253-005-0228-y.
Article
PubMed
CAS
Google Scholar
Ryckeboer J, Mergaert J, Coosemans J, Deprins K, Swings J: Microbiological Aspects of biowaste during composting in a monitored compost bin. J Appl Microbiol. 2003, 94 (1): 127-137. 10.1046/j.1365-2672.2003.01800.x.
Article
PubMed
CAS
Google Scholar
Sundberg C, Franke-Whittle IH, Kauppi S, Yu D, Romantschuk M, Insam H, Håkan J: Characterisation of source-separated household waste intended for composting. Bioresour Technol. 2011, 102 (3): 2859-2867. 10.1016/j.biortech.2010.10.075.
Article
PubMed
CAS
PubMed Central
Google Scholar
Liu WT, Marsh TL, Cheng H, Forney LJ: Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol. 1997, 63 (11): 4516-4522.
PubMed
CAS
PubMed Central
Google Scholar
Massol-Deya AA, Odelson DA, Hickey RF, Tiedje JM: Bacterial community fingerprinting of amplified 16S and 16-23S ribosomal DNA gene sequences and restriction endonuclease analysis (ARDRA). Molecular microbial ecology manual. Edited by: Akkermans ADL, van Elsas JD, deBruijn FJ. 1995, Dordrecht: Kluwer, 1-8.
Google Scholar
Pace NR: A molecular view of microbial diversity and the biosphere. Sci. 1997, 276 (5313): 734-740. 10.1126/science.276.5313.734.
Article
CAS
Google Scholar
Peters S, Koschinsky S, Schwieger F, Tebbe CC: Succession of microbial communities during hot composting as detected by PCR-single-strand-conformation polymorphism-based genetic profiles of small-subunit rRNA genes. Appl Environ Microbiol. 2000, 66 (3): 930-936. 10.1128/AEM.66.3.930-936.2000.
Article
PubMed
CAS
PubMed Central
Google Scholar
Dees PM, Ghiorse WC: Microbial diversity in hot synthetic compost as revealed by PCR-amplified rRNA sequences from cultivated isolates and extracted DNA. FEMS Microbiol Ecol. 2001, 35 (2): 207-216. 10.1111/j.1574-6941.2001.tb00805.x.
Article
PubMed
CAS
Google Scholar
Stackebrandt E: Phylogeny Based on 16S rRNA/DNA. eLS. 2009, Chichester: John Wiley & Sons Ltd, http://onlinelibrary.wiley.com/doi/10.1002/9780470015902.a0000462.pub2/abstract. (http://onlinelibrary.wiley.com/book/10.1002/047001590X)
Google Scholar
Muyzer G: Genetic fingerprinting of microbial communities: present status and future perspective. Proceedings of the 8th International Symposium on Microbial Ecology. Edited by: Bell CR, Brylinsky M, Johnson-Green P. 1999, Halifax, Nova Scotia: Atlantic Canada Society for Microbial Ecology, 1-10.
Google Scholar
Van Es FB, Meyer Reil LA: Biornass and metabolic activity of heterotrophic marine bacteria. Advances in microbial ecology. Edited by: Marshall KC. 1982, New York, USA: Plenum Publishing Corp, lll-170. 6
Google Scholar
Denizci AA, Kazan D, Erarslan A: Bacillus marmarensis sp. nov., an alkaliphilic, protease-producing bacterium isolated from mushroom compost. Int J Sys Evol Microbiol. 2010, 60 (7): 1590-1594. 10.1099/ijs.0.012369-0.
Article
CAS
Google Scholar
Bandounas L, Wierckx NJP, de Winde JH, Ruijssenaars HJ: Isolation and characterization of novel bacterial strains exhibiting ligninolytic potential. BMC Biotechnology. 2011, 11: 94-10.1186/1472-6750-11-94.
Article
PubMed
CAS
PubMed Central
Google Scholar
Biddlestone AJ, Gray KR: Composting. Comprehensive Biotechnology: The Principles, Applications, and Regulations of Biotechnology in Industry, Agriculture, and Medicine. Edited by: Moo-Young M. 1985, Oxford: Pergamon Press, 1059-1070.
Google Scholar
Hashim AB, Aminuddin H, Siva KB: Nutrient content in rice husk ash of some Malaysian rice varieties. Pert J Trop Agric Sci. 1996, 19 (1): 77-80.
Google Scholar
Saber M, Mohammed Z, Badr-el-Din S, Awad N: Composting certain agricultural residues to potting soils. J Ecol Nat Environ. 2011, 3 (3): 78-84.
Google Scholar
Brito LM, Coutinho J, Smith SR: Methods to improve the composting process of the solid fraction of dairy cattle slurry. Bioresour Technol. 2008, 99 (18): 8955-8960. 10.1016/j.biortech.2008.05.005.
Article
PubMed
CAS
Google Scholar
Bernal MP, Paredes C, Sanchez-Monedero MA, Cegarra J: Maturity and stability parameters of composts prepared with a, wide range of organic wastes. Biores Technol. 1998, 63 (1): 91-99. 10.1016/S0960-8524(97)00084-9.
Article
CAS
Google Scholar
Iglesias-Jimenez E, Garcia PV, Espino M, Hernadez JM: City refuse compost as a phosphorus source to overcome the P-fixation capacity of sesquioxide-rich soils. Plant and Soil. 1993, 148: 115-127. 10.1007/BF02185391.
Article
CAS
Google Scholar
Ishii K, Fukui M, Takii S: Microbial succession during a composting process as evaluated by denaturing gradient gel electrophoresis analysis. J Appl Microbiol. 2000, 89 (5): 768-777. 10.1046/j.1365-2672.2000.01177.x.
Article
PubMed
CAS
Google Scholar
Adegunloye DV, Adetuyi FC, Akinosoye FA, Doyeni MO: Microbial analysis of compost using cowdung as booster. Pak J Nut. 2007, 6 (5): 506-510. 10.3923/pjn.2007.506.510.
Article
Google Scholar
Adegunloye DV, Adetuyi FC: Composting of food wastes using cow and pig dung as booster. Afr J Bas & Appl Sci. 2009, 1 (3–4): 70-75.
Google Scholar
Janakiram T, Sridevi K: Conversion of Waste into Wealth: A Study in Solid Waste Management. E-Journal of Chemistry. 2010, 7 (4): 1340-1345. 10.1155/2010/549185. (http://www.e-journals.net/)
Article
CAS
Google Scholar
Felton GK, Carr LE, Prigge CE, Bouwkamp JC: Nitrogen and phosphorous dynamics in cocomposted yard trimmings and broiler litter. Comp Sci Utiliz. 2004, 12 (4): 349-355.
Article
Google Scholar
Jenn-Hung H, Shang-Lien L: Effect of composting on characterization and leaching of copper, manganese and zinc from swine manure. Environ Poll. 2011, 114 (1): 119-127.
Google Scholar
Willson GB: Organic Waste Processing loa Q: Combining raw materials for composting. Biocycl. 1989, 30 (5): 82-85.
CAS
Google Scholar
Paulin B, O’Malley P: Compost production and use in horticulture. 2008, Department of Agriculture and Food, Government of Western Australia, Bulletin 4746 ISSN 1833 7236 (http://www.agric.wa.gov.au/objtwr/imported_assets/content/hort/compost_bulletin08.pdf)
Google Scholar
Kell DB, Kaprelyants AS, Weichart DH, Harwood CR, Barer MR: Viability and activity in readily culturable bacteria: a review and discussion of the practical issues. Ant von Leeuwen. 1998, 73 (2): 169-187. 10.1023/A:1000664013047.
Article
CAS
Google Scholar
Postgate JR: Viable counts and viability. Meth Microbiol. 1969, 1: 611-628.
Article
Google Scholar
Hargerty DJ, Pavoni JL, Heer JE: Solid Waste Management. 1999, New York: Van Nostrand Reinhold, 12-13.
Google Scholar
Golueke CG: Bacteriology of composting. Biocycl. 1992, 33: 55-57.
Google Scholar
Kolbert CP, Persing DH: Ribosomal DNA sequencing as a tool for identification of bacterial pathogens. Curr Opin Microbiol. 1999, 2 (3): 299-305. 10.1016/S1369-5274(99)80052-6.
Article
PubMed
CAS
Google Scholar
Olson JC, Cuff CF, Lukomski S, Lukomska E, Canizales Y, Wu B, Crout RJ, Thomas JG, McNeil DW, Weyant RJ, Marazita ML, Paster BJ, Elliott T: Use of 16S ribosomal RNA gene analyses to characterize the bacterial signature associated with poor oral health in West Virginia. BMC Oral Health. 2011, 11: 1-7. 10.1186/1472-6831-11-1.
Article
Google Scholar
Franke-Whittle IH, Knapp BA, Fuchs J, Kaufmann R, Insam H: Application of COMPOCHIP microarray to investigate the bacterial communities of different composts. Microb Ecol. 2009, 57 (3): 510-521. 10.1007/s00248-008-9435-2.
Article
PubMed
CAS
Google Scholar
Ntougias S, Zervakis GI, Kavroulakis N, Ehaliotis C, Papadopoulou KK: Bacterial diversity in spent mushroom compost assessed by amplified rDNA restriction analysis and sequencing of cultivated isolates. Syst Appl Microbiol. 2004, 27 (6): 746-754. 10.1078/0723202042369857.
Article
PubMed
CAS
Google Scholar
Chandna P, Mallik S, Kuhad RC: Assessment of bacterial diversity in agricultural by-product compost by sequencing of cultivated isolates and amplified rDNA restriction analysis. Appl Microbiol Biotechnol. 2012, 10.1007/s00253-012-4434-0.
Google Scholar
Silva CF, Azevedo RS, Braga C, Silva R, Dias ES, Schwan RF: Microbial diversity in a baggase-based compost prepared for the production of Agaricus brasiliensis. Braz J Microbiol. 2009, 40 (3): 590-600. 10.1590/S1517-83822009000300023.
Article
PubMed
PubMed Central
Google Scholar
Gbolagade JS: Bacteria associated with compost used for cultivation of Nigerian edible mushrooms Pleurotus tuber-regium (Fr.) Singer, and Lentinus squarrosulus (Berk.). Afr J of Biotech. 2006, 5 (4): 338-342.
Google Scholar
Murray PR, Drew WL, Kobayashi GS, Thompson JH: Medical Microbiology. 1990, PA: Mosby Publ Philadelphia
Google Scholar
Strauch D: Occurrence of microorganisms pathogenic for man and animals in source separated biowaste and compost – importance, controls, limits, epidemiology. “The Science of Composting”. Edited by: de Bertoldi M, Sequi P, Lemmes B, Tizano P. 1996, London: CEC, Blackie Academic and Professional, 224-232.
Chapter
Google Scholar
Ahlawat OP, Vijay B: Potential of thermophilic bacteria as microbial inoculant for commercial scale white button mushroom (Agaricus bisporus) compost production. J Sci & Ind Res. 2010, 69 (12): 948-955.
CAS
Google Scholar
Danon M, Franke-Whittle IH, Insam H, Chen Y, Hadar Y: Molecular analysis of bacterial community succession during prolonged compost curing. FEMS Microbiol. Ecol. 2008, 65 (1): 133-144. 10.1111/j.1574-6941.2008.00506.x.
Article
PubMed
CAS
Google Scholar
Boulter JI, Boland GJ, Trevors JT: Compost: a study of the development process and end-product potential for suppression of turfgrass disease. W J Microbio Biotech. 2000, 16 (2): 115-134. 10.1023/A:1008901420646.
Article
CAS
Google Scholar
Kumar A, Prakash A, Johri BN: Bacillus as PGPR in Crop Ecosystem. Bacteria in Agrobiology: Crop Ecosystems. Edited by: Maheshwari DK. 2011, Berlin Heidelberg: Springer-Verlag, 10.1007/978-3-642-18357-7_2, #.
Google Scholar
Ryckeboer J, Mergaert J, Vaes K, Klammer S, De Clercq D, Coosemans J, Insam H, Swings J: A survey of bacteria and fungi occurring during composting and self-heating processes. Ann Microbiol. 2003, 53 (4): 349-410.
Google Scholar
Vaz-Moreira I, Silva ME, Manaia CM, Nunes OC: Diversity of Bacterial Isolates from Commercial and Homemade Composts. Microbial Ecol. 2008, 55 (4): 714-722. 10.1007/s00248-007-9314-2.
Article
Google Scholar
Young CC, Chou JH, Arun AB, Yen WS, Sheu SY, Shen FT, Lai WA, Rekha PD, Chen WM: Comamonas composti sp. nov., isolated from food waste compost. Int J Syst Bacteriol. 2008, 58 (1): 251-256.
Article
CAS
Google Scholar
Quinteros R, Goodwin S, Lenz RW, Park WH: Extracellular degradation of medium chain length poly (β-hydroxyalkanoates) by Comamonas sp. Int J Biolog Macromol. 1999, 25 (1–3): 135-143.
Article
CAS
Google Scholar
Willems A, De Ley J, Gillis M, Kersters K: Comamonadaceae, a new family encompassing the acidovorans rRNA complex, including Variovorax paradoxus gen. nov., comb. nov., for Alcaligenes paradoxus (Davis 1969). Int J Syst Evol Microbiol. 1991, 41 (3): 445-450.
Google Scholar
Pinel N, Davidson SK, Stahl DA: Verminephrobacter eiseniae gen. nov., sp. nov., a nephridial symbiont of the earthworm Eisenia foetida (Savigny). Int J Syst Evol Microbiol. 2008, 58 (9): 2147-2157. 10.1099/ijs.0.65174-0.
Article
PubMed
CAS
Google Scholar
Pizl V, Novokova A: Interactions between microfungi and Eisenia andrei (Oligochaeta) during cattle manure vermicomposting. Pedobiologia. 2003, 47 (5–6): 895-899.
Google Scholar
Schramm A, Davidson S, Dodsworth J, Drake H, Stahl D, Dubilier N: Acidovorax-like symbionts in the nephridia of earthworms. Environ Microbiol. 2003, 5 (9): 804-809. 10.1046/j.1462-2920.2003.00474.x.
Article
PubMed
CAS
Google Scholar
Alidadi H, Parvaresh AR, Shahmansouri MR, Pourmoghadas H: Combined compost and vermicomposting process in the treatment and bioconversion of sludge. Iran J Environ Heal Sci Eng. 2005, 2 (4): 251-254.
CAS
Google Scholar
Rhoades JD: Salinity: electrical conductivity and total dissolved solids. Methods of Soil Analysis. Part 3. Chemical Methods. Edited by: Sparks DL. 1996, Madison: SSSA, 417-435.
Google Scholar
Blakemore LC, Searle PL, Daily BK: Methods for chemical analysis of soils. 1981, New Zealand Soil Bureau Report IDA. D5C
Google Scholar
Walkley AJ, Black CA: Estimation of soil organic carbon by chromic acid titration method. Soil Sci. 1934, 37: 29-38. 10.1097/00010694-193401000-00003.
Article
CAS
Google Scholar
Kjeldahl J: A new method for the estimation of nitrogen in organic compounds. Z. Anal Chem. 1883, 22: 366-
Article
Google Scholar
Steinbergs A: A method for the determination of total sulphur in soils. Analyst (London). 1955, 80: 457-461. 10.1039/an9558000457.
Article
CAS
Google Scholar
Anonymous: Guide to the interpretation of analytical data for loam less compost. Ministry of Agriculture, Fisheries and Food, No. 25. ADAS. 1988, United Kingdome: Agricultural Development and Advisory Service
Google Scholar
Moral R, Navarro-Pedreno J, Gomez I, Mataix J: Distribution and accumulation of heavy metals (Cd, Ni and Cr) in tomato plant. Environ Bulletin. 1994, 3: 395-399.
CAS
Google Scholar
Thompson M, Wood SJ: Atomic absorption methods in applied geochemistry. Atomic Absorption Spectrometry. Edited by: Cantle JE. 1982, Amsterdam: Elsevier, 261-284.
Chapter
Google Scholar
Koplı´k R, Curdova E, Suchanek M: Trace element analysis in CRM of plant origin by inductively coupled plasma mass spectrometry. Fresenius’ J Anal Chem. 1998, 300: 449-451.
Google Scholar
Fingerová H, Koplı ´k R: Study of minerals and trace elements. Fresenius J Anal Chem. 1993, 63 (5–6): 545-549.
Google Scholar
Sambrook J, Russell DW: Molecular Cloning. 2001, New York: Cold Spring Harbor Laboratory Press, 3
Google Scholar
DeLong EF: Archaea in coastal marine sediments. Proc Natl Acad Sci. 1992, 89: 5685-5689. 10.1073/pnas.89.12.5685.
Article
PubMed
CAS
PubMed Central
Google Scholar
Wilmotte A, van-der Auwera G, de Wachter R: Structure of the 16S ribosomal RNA of the thermophilic cyanobacterium Chlorogloeopsis HTF (‘Mastigocladus laminosus HTF’) strain PCC7518, and phylogenetic analysis. FEBS Lett. 1993, 317 (1–2): 96-100.
Article
PubMed
CAS
Google Scholar
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nuc Acid Res. 1997, 25 (17): 3389-3402. 10.1093/nar/25.17.3389.
Article
CAS
Google Scholar
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG: The CLUSTAL-X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acid Res. 1997, 25 (24): 4876-4882. 10.1093/nar/25.24.4876.
Article
CAS
Google Scholar
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA 5: molecular evolutionary genetic analysis using maximum likelihood, evolutionary distance and maximum parsimony methods. Mol Biol Evol. 2011, 10.1093/molbev.msr121.
Google Scholar