Gordenin DA, Malkova AL, Peterzen A, Kulikov VN, Pavlov YI, Perkins E, Resnick MA: Transposon Tn5 excision in yeast: Influence of DNA polymerases α, δ, and ϵ and repair genes. Proc Natl Acad Sci U S A. 1992, 89: 3785-3789. 10.1073/pnas.89.9.3785.
Article
PubMed
CAS
PubMed Central
Google Scholar
Vallen EA, Cross FR: Mutations in RAD27 define a potential link between G1 cyclins and DNA replication. Mol Cell Biol. 1995, 15 (8): 4291-4302.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ruskin B, Fink G: Mutations in POL1 increase the mitotic instability of tandem inverted repeats in Saccharomyces cerevisiae. Genetics. 1993, 133: 43-56.
Google Scholar
Tishkoff DX, Boerger AL, Bertrand P, Filosi N, Gaida GM, Kane MF, Kolodner RD: Identification and characterization of Saccharomyces cerevisiae EXO1, a gene encoding an exonuclease that interacts with MSH2. Proc Natl Acad Sci U S A. 1997, 94: 7487-7492. 10.1073/pnas.94.14.7487.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zou H, Rothstein R: Holliday junctions accumulate in replication mutants via a RecA homolog-independent mechanism. Cell. 1997, 90: 87-96. 10.1016/S0092-8674(00)80316-5.
Article
PubMed
CAS
Google Scholar
Chen C, Kolodner R: Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nat Genet. 1999, 23: 81-85.
Article
PubMed
CAS
Google Scholar
Pavlov YI, Shcherbakova PV, Kunkel TA: In vivo consequences of putative active site mutations in yeast DNA Polymerases a, ϵ, δ, and ζ. Genetics. 2001, 159: 47-64.
PubMed
CAS
PubMed Central
Google Scholar
Navarro MS, Bi L, Bailis AM: A mutant allele of the transcription factor IIH helicase gene, RAD3, promotes loss of heterozygosity in response to a DNA replication defect in Saccharomyces cerevisiae. Genetics. 2007, 176: 1391-1402. 10.1534/genetics.107.073056.
Article
PubMed
CAS
PubMed Central
Google Scholar
Venkatesan RN, Treuting PM, Fuller ED, Goldsby RE, Norwood TH, Gooley TA, Ladiges WC, Preston BD, Loeb LA: Mutation at the polymerase active site of mouse DNA polymerase δ increases genomic instability and accerlerates tumorigenesis. Mol Cell Biol. 2007, 27 (21): 7669-7682. 10.1128/MCB.00002-07.
Article
PubMed
CAS
PubMed Central
Google Scholar
Mito E, Mokhnatkin JV, Steele MC, Buettner VL, Sommer SS, Manthey GM, Bailis AM: Mutagenic and recombinagenic responses to defective DNA polymerase δ are facilitated by the Rev1 protein in pol3-t mutants of Saccharomyces cerevisiae. Genetics. 2008, 179: 1795-1806. 10.1534/genetics.108.089821.
Article
PubMed
CAS
PubMed Central
Google Scholar
Galli A, Cervelli T, Schiestl RH: Characterization of the hyperrecombination phenotype of the pol3-t mutation of Saccharomyces cerevisiae. Genetics. 2003, 164: 65-79.
PubMed
CAS
PubMed Central
Google Scholar
Harrington JJ, Lieber MR: The characterization of a mammalian DNA structure-specific endonuclease. EMBO J. 1994, 13 (5): 1235-1246.
PubMed
CAS
PubMed Central
Google Scholar
Liu Y, Kao HI, Bambara RA: Flap endonuclease 1: A central component of DNA metabolism. Annu Rev Biochem. 2004, 73: 589-615. 10.1146/annurev.biochem.73.012803.092453.
Article
PubMed
CAS
Google Scholar
Wu X, Wang Z: Relationships between yeast Rad27 and Apn1 in response to apurinic/apyrimidinic (AP) sites in DNA. Nucleic Acids Res. 1999, 27 (4): 956-962. 10.1093/nar/27.4.956.
Article
PubMed
CAS
PubMed Central
Google Scholar
Tseng HM, Tomkinson AE: Processing and joining of DNA ends coordinated by interactions among Dnl4/Lif1, Pol4, and FEN-1. J Biol Chem. 2004, 279 (46): 47580-47588. 10.1074/jbc.M404492200.
Article
PubMed
CAS
Google Scholar
Parenteau J, Wellinger RJ: Accumulation of single-stranded DNA and destabilization of telomeric repeats in yeast mutant strains carrying a deletion of RAD27. Mol Cell Biol. 1999, 19 (6): 4143-4152.
Article
PubMed
CAS
PubMed Central
Google Scholar
Nowosielska A: Bacterial DNA repair genes and their eukaryotic homologues: 5. The role of recombination in DNA repair and genome stability. Acta Biochimica Polonica. 2007, 54 (3): 483-494.
PubMed
CAS
Google Scholar
Tishkoff DX, Filosi N, Gaida GM, Kolodner RD: A novel mutation avoidance mechanism dependent on S. cerevisiae RAD27 is distinct from DNA mismatch repair. Cell. 1997, 88: 253-263. 10.1016/S0092-8674(00)81846-2.
Article
PubMed
CAS
Google Scholar
Symington LS: Homologous recombination is required for the viability of rad27 mutants. Nucleic Acids Res. 1998, 26 (24): 5589-5595. 10.1093/nar/26.24.5589.
Article
PubMed
CAS
PubMed Central
Google Scholar
Debrauwere H, Loeillet S, Lin W, Lopes J, Nicolas A: Links between replication and recombination in Saccharomyces cerevisiae: a hypersensitive requirement for homologous recombination in the absence of Rad27 activity. Proc Natl Acad Sci U S A. 2001, 98 (15): 8263-8269. 10.1073/pnas.121075598.
Article
PubMed
CAS
PubMed Central
Google Scholar
Pannunzio NR, Manthey GM, Liddell LC, Fu BX, Roberts CM, Bailis AM: Rad59 regulates association of Rad52 with DNA double-strand breaks. Microbiology Open. 2012, 1 (3): 285-297. 10.1002/mbo3.31.
Article
PubMed
CAS
PubMed Central
Google Scholar
Paques F, Haber JE: Multiple pathwyas of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Micro Mol Biol Rev. 1999, 63 (2): 349-404.
CAS
Google Scholar
Krogh BO, Symington LS: Recombination proteins in yeast. Annu Rev Genet. 2004, 38: 233-271. 10.1146/annurev.genet.38.072902.091500.
Article
PubMed
CAS
Google Scholar
Wu Y, Kantake N, Sugiyama T, Kowalczykowski SC: Rad51 protein controls Rad52-mediated DNA annealing. J Biol Chem. 2008, 283 (21): 14883-14892. 10.1074/jbc.M801097200.
Article
PubMed
CAS
PubMed Central
Google Scholar
Davis AP, Symington LS: The yeast recombinational repair protein Rad59 interacts with Rad52 and stimulates single-strand annealing. Genetics. 2001, 159: 515-525.
PubMed
CAS
PubMed Central
Google Scholar
Pannunzio NR, Manthey GM, Bailis AM: RAD59 is required for efficient repair of simultaneous double-strand breaks resulting in translocations in Saccharomyces cerevisiae. DNA Repair (Amst). 2008, 7 (5): 788-800. 10.1016/j.dnarep.2008.02.003.
Article
CAS
Google Scholar
Pannunzio NR, Manthey GM, Bailis AM: Rad59 and Rad1 cooperate in translocation formation by single-strand annealing in Saccharomyces cerevisiae. Curr Genet. 2010, 56 (1): 87-100. 10.1007/s00294-009-0282-6.
Article
PubMed
CAS
PubMed Central
Google Scholar
Sugawara N, Ira G, Haber JE: DNA length dependence of the single-strand annealing pathway and the role of Saccharomyces cerevisiae RAD59 in double-strand break repair. Mol Cell Biol. 2000, 20 (14): 5300-5309. 10.1128/MCB.20.14.5300-5309.2000.
Article
PubMed
CAS
PubMed Central
Google Scholar
Bai Y, Symington LS: A Rad52 homolog is required for RAD51-independent mitotic recombination in Saccharomyces cerevisiae. Genes Dev. 1996, 10 (16): 2025-2037. 10.1101/gad.10.16.2025.
Article
PubMed
CAS
Google Scholar
Cortes-Ledesma F, Tous C, Aguilera A: Different genetic requirements for repair of replication-born double-strand breaks by sister-chromatid recombination and break-induced replication. Nucleic Acids Res. 2007, 35 (19): 6560-6570. 10.1093/nar/gkm488.
Article
PubMed
CAS
PubMed Central
Google Scholar
Mott C, Symington LS: RAD51-independent inverted-repeat recombination by a strand-annealing mechanism. DNA Repair (Amst). 2011, 10 (4): 408-415. 10.1016/j.dnarep.2011.01.007.
Article
CAS
Google Scholar
Cortes-Ledesma F, Malagon F, Aguilera A: A novel yeast mutation, rad52-L89F, causes a specific defect in Rad51-independent recombination that correlates with a reduced ability of Rad52-L89F to interact with Rad59. Genetics. 2004, 168: 553-557. 10.1534/genetics.104.030551.
Article
PubMed
CAS
PubMed Central
Google Scholar
Feng Q, During L, de Mayolo AA, Lettier G, Lisby M, Erdeniz N, Mortensen UH, Rothstein R: Rad52 and Rad59 exhibit both overlapping and distinct functions. DNA Repair (Amst). 2007, 6 (1): 27-37. 10.1016/j.dnarep.2006.08.007.
Article
CAS
Google Scholar
Kagawa W, Kurumizaka H, Ishitani R, Fukai S, Nureki O, Shibata T, Yokoyama S: Crystal structure of the homologous-pairing domain from the human Rad52 recombinase in the undecameric form. Mol Cell. 2002, 10: 359-371. 10.1016/S1097-2765(02)00587-7.
Article
PubMed
CAS
Google Scholar
Lloyd JA, McGrew DA, Knight KL: Identification of residues important for DNA binding in the full-length human Rad52 protein. J Mol Biol. 2005, 345 (2): 239-249. 10.1016/j.jmb.2004.10.065.
Article
PubMed
CAS
Google Scholar
Veaute X, Jeusset J, Soustelle C, Kowalczykowski SC, Fabre F: The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature. 2003, 423: 309-312. 10.1038/nature01585.
Article
PubMed
CAS
Google Scholar
Antony E, Tomko EJ, Xiao Q, Krejci L, Lohman TM, Ellenberger T: Srs2 disassembles Rad51 filaments by a protein-protein interaction triggering ATP turnover and dissociation of Rad51 from DNA. Mol Cell. 2009, 35 (1): 105-115. 10.1016/j.molcel.2009.05.026.
Article
PubMed
CAS
PubMed Central
Google Scholar
Sung P: Catalysis of ATP-dependent homologous DNA pairing and strand exchange by yeast RAD51 protein. Science. 1994, 265 (5176): 1241-1243. 10.1126/science.8066464.
Article
PubMed
CAS
Google Scholar
Bai Y, Davis AP, Symington LS: A novel allele of RAD52 that causes severe DNA repair and recombination deficiencies only in the absence of RAD51 or RAD59. Genetics. 1999, 153: 1117-1130.
PubMed
CAS
PubMed Central
Google Scholar
Jablonovich Z, Liefshitz B, Steinlauf R, Kupiec M: Characterization of the role played by the RAD59 gene of Saccharoymces cerevisiae in ectopic recombination. Curr Genet. 1999, 36: 13-20. 10.1007/s002940050467.
Article
PubMed
CAS
Google Scholar
Bailis AM, Maines S, Negritto MT: The essential helicase gene RAD3 suppresses short-sequence recombination in Saccharomyces cerevisiae. Mol Cell Biol. 1995, 15 (5): 3998-4008.
Article
PubMed
CAS
PubMed Central
Google Scholar
Liefshitz B, Parket A, Maya R, Kupiec M: The role of DNA repair genes in recombination between repeated sequences in yeast. Genetics. 1995, 140: 1199-1211.
PubMed
CAS
PubMed Central
Google Scholar
Rong L, Klein HL: Purification and characterization of the SRS2 DNA helicase of the yeast Saccharomyces cerevisiae. J Biol Chem. 1993, 268 (2): 1252-1259.
PubMed
CAS
Google Scholar
Rong L, Palladino F, Aguilera A, Klein HL: The hyper-gene conversion hpr5-1 mutation of Saccharomyces cerervisiae is an allele of the SRS2/RADH gene. Genetics. 1991, 127: 75-85.
PubMed
CAS
PubMed Central
Google Scholar
Palladino F, Klein HL: Analysis of mitotic and meiotic defects in Saccharomyces cerevisiae SRS2 DNA helicase mutants. Genetics. 1992, 132 (1): 23-37.
PubMed
CAS
PubMed Central
Google Scholar
Morrison DP, Hastings PJ: Characterization of the mutator mutation mut5-1. Mol Gen Genet. 1979, 175 (1): 57-65. 10.1007/BF00267856.
Article
PubMed
CAS
Google Scholar
Lopes J, Ribeyre C, Nicolas A: Complex minisatellite rearrangements generated in the total or partial absence of Rad27/hFEN1 activity occur in a single generation and are Rad51 and Rad52 dependent. Mol Cell Biol. 2006, 26 (17): 6675-6689. 10.1128/MCB.00649-06.
Article
PubMed
CAS
PubMed Central
Google Scholar
Freudenreich CH, Kantrow SM, Zakian VA: Expansion and length-dependent fragility of CTG repeats in yeast. Science. 1998, 279 (853): 853-856.
Article
PubMed
CAS
Google Scholar
Johnson RE, Kovvali GK, Prakash L, Prakash S: Role of yeast Rth1 nuclease and its homologs in mutation avoidance, DNA repair, and DNA replication. Curr Genet. 1998, 34: 21-29. 10.1007/s002940050362.
Article
PubMed
Google Scholar
Fasullo MT, Davis RW: Direction of chromosome rearrangements in Saccaromyces cerevisiae by use of his3 recombinational substrates. Mol Cell Biol. 1988, 8 (10): 4370-4380.
Article
PubMed
CAS
PubMed Central
Google Scholar
Nguyen HD, Becker J, Thu YM, Costanzo M, Koch EN, Smith S, Myers CL, Boone C, Bielinsky AK: Unligated Okazaki fragments induce PCNA ubiquitnation and a requirement for Rad59-dependent replication fork progression. PLoS One. 2013, 8 (6): e66379-10.1371/journal.pone.0066379.
Article
PubMed
CAS
PubMed Central
Google Scholar
Davis AP, Symington LS: The Rad52-Rad59 complex interacts with Rad51 and replication protein A. DNA Repair (Amst). 2003, 2: 1127-1134. 10.1016/S1568-7864(03)00121-6.
Article
CAS
Google Scholar
Oum J-H, Seong C, Kwon Y, Ji J-H, Sid A, Ramakrishnan S, Ira G, Malkova A, Sung P, Lee SE, Shim EY: RSC facilitates Rad59-dependent homologous recombination between sister chromatids by promoting cohesin loading at DNA double-strand breaks. Mol Cell Biol. 2011, 31 (19): 3924-3937. 10.1128/MCB.01269-10.
Article
PubMed
CAS
PubMed Central
Google Scholar
Pohl TJ, Nickoloff JA: Rad51-independent interchromosomal double-strand break repair by gene conversion requires Rad52 but not Rad55, Rad57, or Dmc1. Mol Cell Biol. 2008, 28 (3): 897-906. 10.1128/MCB.00524-07.
Article
PubMed
CAS
PubMed Central
Google Scholar
Nikolova T, Ensminger M, Lobrich M, Kaina B: Homologous recombination protects mammalian cells from replication-associated DNA double-strand breaks arising in response to methyl methanesulfonate. DNA Repair (Amst). 2010, 9 (10): 1050-1063. 10.1016/j.dnarep.2010.07.005.
Article
CAS
Google Scholar
Nikolova T, Hennekes F, Bhatti A, Kaina B: Chloroethylnitrosourea-induced cell death and genotoxicity: cell cycle dependence and the role of DNA double-strand breaks. HR and NHEJ. Cell Cycle. 2012, 11 (14): 2606-2619. 10.4161/cc.20862.
Article
CAS
Google Scholar
Sherman F, Fink F, Hicks J: Methods in Yeast Genetics. 1986, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press
Google Scholar
Schild D, Konforti B, Perez C, Gish W, Mortimer RK: Isolation and characterization of yeast DNA repair genes. I. Cloning of the RAD52 gene. Curr Genet. 1983, 7: 85-92. 10.1007/BF00365631.
Article
PubMed
CAS
Google Scholar
Schild D, Calderon IL, Contopoulo R, Mortimer RK: Cloning of yeast recombination repair genes and evidence that several are nonessential genes. 1983, New York: Alan R. Liss
Google Scholar
Frank G, Qiu J, Somsouk M, Weng Y, Somsouk L, Nolan JP, Shen B: Partial functional deficiency of E160D flap endonuclease-1 mutant in vitro and in vivo is due to defective cleavage of DNA substrates. J Biol Chem. 1998, 273 (49): 33064-33072. 10.1074/jbc.273.49.33064.
Article
PubMed
CAS
Google Scholar
Hoffman CS, Winston F: A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene. 1987, 57 (2–3): 267-272.
Article
PubMed
CAS
Google Scholar
Singleton P: Bateria in Biology, Biotechnology, and Medicine. 1995, New York: John Wiley & Sons
Google Scholar
Nash N, Tokiwa G, Anand S, Erickson K, Futcher AB: The WHI1+ gene of Saccharomyces cerevisiae tethers cell division to cell size and is a cyclin homolog. EMBO J. 1988, 7 (13): 4335-4346.
PubMed
CAS
PubMed Central
Google Scholar
Bailis AM, Rothstein R: A defect in mismatch repair in Saccharomyces cerevisiae stimulates ectopic recombination between homeologous genes by an excision repair dependent process. Genetics. 1990, 126: 535-547.
PubMed
CAS
PubMed Central
Google Scholar
Lea DE, Coulson CA: The distribution of the numbers of mutants in bacterial populations. J Genet. 1949, 49: 264-285. 10.1007/BF02986080.
Article
PubMed
CAS
Google Scholar
Spell RM, Jinks-Robertson S: Determination of mitotic recombination rates by fluctuation analysis in Saccaromyces cerevisiae. Methods Mol Biol. 2004, 262: 3-12.
PubMed
CAS
Google Scholar
Fasullo MT, Davis RW: Recombinational substrates designed to study recombination between unique and repetitive sequence in vivo. Proc Natl Acad Sci U S A. 1987, 84: 6215-6219. 10.1073/pnas.84.17.6215.
Article
PubMed
CAS
PubMed Central
Google Scholar