Bachand F: Protein arginine methyltransferases: from unicellular eukaryotes to humans. Eukaryot Cell. 2007, 6: 889-898. 10.1128/EC.00099-07.
Article
PubMed
CAS
PubMed Central
Google Scholar
Bedford MT: Arginine methylation at a glance. J Cell Sci. 2007, 120: 4243-4246. 10.1242/jcs.019885.
Article
PubMed
CAS
Google Scholar
Bedford MT, Clarke SG: Protein arginine methylation in mammals: who, what, and why. Mol Cell. 2009, 33: 1-13. 10.1016/j.molcel.2008.12.013.
Article
PubMed
CAS
PubMed Central
Google Scholar
Krause CD, Yang ZH, Kim YS, Lee JH, Cook JR, Pestka S: Protein arginine methyltransferases: evolution and assessment of their pharmacological and therapeutic potential. Pharmacol Ther. 2007, 113: 50-87. 10.1016/j.pharmthera.2006.06.007.
Article
PubMed
CAS
Google Scholar
Boisvert FM, Chénard CA, Richard S: Protein interfaces in signaling regulated by arginine methylation. Sci Signal. 2005, 271: re2-
Google Scholar
Weber S, Maaβ F, Schuemann M, Krause E, Suske G, Bauer UM: PRMT1-mediated arginine methylation of PIAS1 regulated STAT1 signaling. Genes Dev. 2009, 23: 118-132. 10.1101/gad.489409.
Article
PubMed
CAS
PubMed Central
Google Scholar
Green DM, Marfatia KA, Crafton EB, Zhang X, Cheng X, Corbett AH: Nab2p is required for poly(A) RNA export in Saccharomyces cerevisiae and is regulated by arginine methylation via Hmt1p. J Biol Chem. 2002, 277: 7752-7760. 10.1074/jbc.M110053200.
Article
PubMed
CAS
Google Scholar
Lukong KE, Richard S: Arginine methylation signals mRNA export. Nat Struct Mol Biol. 2004, 11: 914-915. 10.1038/nsmb1004-914.
Article
PubMed
CAS
Google Scholar
Godin KS, Varani G: How arginine-rich domains coordinate mRNA maturation events. RNA Biol. 2007, 4: 69-75. 10.4161/rna.4.2.4869.
Article
PubMed
CAS
Google Scholar
Polevoda B, Sherman F: Methylation of proteins involved in translation. Mol Micro. 2007, 65: 590-606. 10.1111/j.1365-2958.2007.05831.x.
Article
CAS
Google Scholar
Yu MC, Bachand F, McBride AE, Komili S, Casolari JM, Silver PA: Arginine methyltransferase affects interactions and recruitment of mRNA processing and export factors. Genes Dev. 2004, 18: 2024-2035. 10.1101/gad.1223204.
Article
PubMed
CAS
PubMed Central
Google Scholar
Xie B, Invernizzi CF, Richard S, Wainberg MA: Arginine methylation of the human immunodeficiency virus type 1 Tat protein by PRMT6 negatively affects Tat interactions with both cyclin T1 and the Tat transactivation region. J Virol. 2007, 81: 4226-4234. 10.1128/JVI.01888-06.
Article
PubMed
CAS
PubMed Central
Google Scholar
De Leeuw F, Zhang T, Wauquier C, Huez G, Kruys V, Gueydan C: The cold-inducible RNA-binding protein migrates from the nucleus to cytoplasmic stress granules by a methylation-dependent mechanism and acts as a translational repressor. Exp Cell Res. 2007, 313: 4130-4144. 10.1016/j.yexcr.2007.09.017.
Article
PubMed
CAS
Google Scholar
Perreault A, Lemieux C, Bachand F: Regulation of the nuclear poly(A)-binding protein by arginine methylation in fission yeast. J Biol Chem. 2007, 282: 7552-7562.
Article
PubMed
CAS
Google Scholar
Smith WA, Schurter BT, Wong-Staal F, David M: Arginine methylation of RNA helicase A determines its subcellular localization. J Biol Chem. 2004, 279: 22795-22798. 10.1074/jbc.C300512200.
Article
PubMed
CAS
Google Scholar
Lee DY, Teyssier C, Strahl BD, Stallcup MR: Role of protein methylation in regulation of transcription. Endocr Rev. 2005, 26: 147-170. 10.1385/ENDO:26:2:147.
Article
PubMed
CAS
Google Scholar
Côté J, Boisvert FM, Boulanger MC, Bedford MT, Richard S: Sam68 RNA Binding Protein Is an In Vivo Substrate for Protein Arginine N-Methyltransferase 1. Mol Biol Cell. 2003, 14: 274-287. 10.1091/mbc.E02-08-0484.
Article
PubMed
PubMed Central
Google Scholar
Goulah CC, Read LK: Differential effects of arginine methylation on RBP16 mRNA binding, guide RNA (gRNA) binding, and gRNA-containing ribonucleoprotein complex (gRNP) formation. J Biol Chem. 2007, 282: 7181-7190.
Article
PubMed
CAS
Google Scholar
McBride AE, Cook JT, Stemmler EA, Rutledge KL, McGrath KA, Rubens JA: Arginine methylation of yeast mRNA-binding protein Npl3 directly affects its function, nuclear export, and intranuclear protein interactions. J Biol Chem. 2005, 280: 30888-30898. 10.1074/jbc.M505831200.
Article
PubMed
CAS
Google Scholar
Stetler A, Winograd C, Sayegh J, Cheever A, Patton E, Zhang X, Clarke S, Ceman S: Identification and characterization of the methyl arginines in the fragile X mental retardation protein Fmrp. Hum Mol Genet. 2005, 15: 87-96. 10.1093/hmg/ddi429.
Article
PubMed
Google Scholar
Bedford MT, Richard S: Arginine methylation: An emerging regulator of protein function. Mol Cell. 2005, 18: 263-272. 10.1016/j.molcel.2005.04.003.
Article
PubMed
CAS
Google Scholar
McBride AE, Silver PA: State of the Arg: Protein methylation at arginine comes of age. Cell. 2001, 106: 5-8. 10.1016/S0092-8674(01)00423-8.
Article
PubMed
CAS
Google Scholar
Pahlich S, Zakaryan RP, Gehring H: Protein arginine methylation: Cellular functions and methods of analysis. Biochim Biophys Acta. 2006, 1764: 1890-1903. 10.1016/j.bbapap.2006.08.008.
Article
PubMed
CAS
Google Scholar
Wooderchak WL, Zang T, Zhou ZS, Acuña M, Tahara SM, Hevel JM: Substrate profiling of PRMT1 reveals amino acid sequences that extend beyond the “RGG” paradigm. Biochemistry. 2008, 47: 9456-9466. 10.1021/bi800984s.
Article
PubMed
CAS
Google Scholar
Wolf SS: The protein arginine methyltransferase family: an update about function, new perspectives and the physiological role in humans. Cell Mol Life Sci. 2009, 66: 2109-2121. 10.1007/s00018-009-0010-x.
Article
PubMed
CAS
Google Scholar
Fisk JC, Read LK: Protein arginine methylation in parasitic protozoa. Eukaryot Cell. 2011, 10: 1013-1022. 10.1128/EC.05103-11.
Article
PubMed
CAS
PubMed Central
Google Scholar
Pelletier M, Pasternack DA, Read LK: In vitro and in vivo analysis of the major type I protein arginine methyltransferase from Trypanosoma brucei. Mol Biochem Parasitol. 2005, 144: 206-217. 10.1016/j.molbiopara.2005.08.015.
Article
PubMed
CAS
Google Scholar
Pasternack DA, Sayegh J, Clarke S, Read LK: Evolutionarily divergent type II protein arginine methyltransferase in Trypanosoma brucei. Eukaryot Cell. 2007, 6: 1665-1681. 10.1128/EC.00133-07.
Article
PubMed
CAS
PubMed Central
Google Scholar
Fisk JC, Sayegh J, Zurita-Lopez C, Menon S, Presnyak V, Clarke SG, Read LK: A type III protein arginine methyltransferase from the protozoan parasite Trypanosoma brucei. J Biol Chem. 2009, 284: 11590-11600.
Article
PubMed
CAS
PubMed Central
Google Scholar
Fisk JC, Zurita-Lopez C, Sayegh J, Tomasello DL, Clarke SG, Read LK: TbPRMT6 is a type I protein arginine methyltransferase that contributes to cytokinesis in Trypanosoma brucei. Eukaryot Cell. 2010, 9: 866-877. 10.1128/EC.00018-10.
Article
PubMed
CAS
PubMed Central
Google Scholar
Goulah CC, Pelletier M, Read LK: Arginine methylation regulates mitochondrial gene expression in Trypanosoma brucei through multiple effector proteins. RNA. 2006, 12: 1545-1555. 10.1261/rna.90106.
Article
PubMed
CAS
PubMed Central
Google Scholar
Berriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renauld H, Bartholomeu DC, Lennard NJ, Caler E, Hamlin NE, Haas B, Böhme U, Hannick L, Aslett MA, Shallom J, Marcello L, Hou L, Wickstead B, Alsmark UC, Arrowsmith C, Atkin RJ, Barron AJ, Bringaud F, Brooks K, Carrington M, Cherevach I, Chillingworth TJ, Churcher C, Clark LN, Corton CH, Cronin A: The genome of African trypanosome Trypanosoma brucei. Science. 2005, 309: 416-422. 10.1126/science.1112642.
Article
PubMed
CAS
Google Scholar
Passos DO, Bressan GC, Nery FC, Kobarg J: Ki-1/57 interacts with PRMT1 and is a substrate for arginine methylation. FEBS J. 2006, 273: 3946-3961. 10.1111/j.1742-4658.2006.05399.x.
Article
PubMed
CAS
Google Scholar
Reue K, Zhang P: The lipin protein family: dual roles in lipid biosynthesis and gene expression. FEBS Lett. 2008, 582: 90-96. 10.1016/j.febslet.2007.11.014.
Article
PubMed
CAS
PubMed Central
Google Scholar
Harris TE, Finck BN: Dual function lipin proteins and glycerolipid metabolism. Trends Endocrinol Metab. 2011, 22: 226-233. 10.1016/j.tem.2011.02.006.
Article
PubMed
CAS
PubMed Central
Google Scholar
Inoue K, Mizuno T, Wada K, Hagiwara M: Novel RING Finger proteins, Air1p and Air2p, interact with Hmt1p and inhibit the arginine methylation of Npl3p. J Biol Chem. 2000, 275: 32793-32799.
Article
PubMed
CAS
Google Scholar
Tang J, Kao PN, Herschman HR: Protein-arginine methyltransferase I, the predominant protein-arginine methyltransferase in cells, interacts with and is regulated by interleukin enhancer-binding factor 3. J Biol Chem. 2000, 275: 19866-19876. 10.1074/jbc.M000023200.
Article
PubMed
CAS
Google Scholar
Hoek M, Zanders T, Cross GAM: Trypanosoma brucei expression-site-associated-gene-8 protein interacts with a Pumilio family protein. Mol Biochem Parasitol. 2002, 120: 269-283. 10.1016/S0166-6851(02)00009-9.
Article
PubMed
CAS
Google Scholar
Péterfy M, Xu P, Reue K, Phan: Lipodystrophy in the fld mouse results from mutation of a new gene encoding a nuclear protein, lipin. Nat Genet. 2001, 27: 121-124. 10.1038/83685.
Article
PubMed
Google Scholar
Langner CA, Birkenmeier EH, Roth KA, Bronson RT, Gordon JI: Characterization of the peripheral neuropathy in neonatal and adult mice that are homozygous for the fatty liver dystrophy (fld) mutation. J Biol Chem. 1991, 266: 11955-11964.
PubMed
CAS
Google Scholar
Reue K, Xu P, Wang XP, Slavin BG: Adipose tissue deficiency, glucose intolerance, and increased atherosclerosis result from mutation in the mouse fatty liver dystrophy (fld) gene. J Lipid Res. 2000, 41: 1067-1076.
PubMed
CAS
Google Scholar
Donkor J, Sariahmetoglu M, Dewald J, Brindley DN, Reue K: Three mammalian lipins act as phosphatidate phosphatases with distinct tissue expression patterns. J Biol Chem. 2007, 282: 3450-3457.
Article
PubMed
CAS
Google Scholar
Han GS, Wu WI, Carman GM: The Saccharomyces cerevisiae Lipin homolog is a Mg2 + -dependent phosphatidate phosphatase enzyme. J Biol Chem. 2006, 281: 9210-9218.
Article
PubMed
CAS
PubMed Central
Google Scholar
Rupali U, Liu Y, Provaznik J, Schmitt S, Lehmann M: Lipin Is a Central Regulator of Adipose Tissue Development and Function in Drosophila melanogaster. Mol Cell Biol. 2011, 31: 1646-1656. 10.1128/MCB.01335-10.
Article
Google Scholar
Strausberg RL, Feingold EA, Grouse LH, Derge JG, Klausner RD, Collins FS, Wagner L, Shenmen CM, Schuler GD, Altschul SF, Zeeberg B, Buetow KH, Schaefer CF, Bhat NK, Hopkins RF, Jordan H, Moore T, Max SI, Wang J, Hsieh F, Diatchenko L, Marusina K, Farmer AA, Rubin GM, Hong L, Stapleton M, Soares MB, Bonaldo MF, Casavant TL, Scheetz TE: Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci USA. 2002, 99: 16899-16903. 10.1073/pnas.242603899.
Article
PubMed
Google Scholar
El-Sayed NM, Myler PJ, Bartholomeu DC, Nilsson D, Aggarwal G, Tran AN, Ghedin E, Wourthey EA, Delcher AL, Blandin G, Westenberger SJ, Caler E, Cerqueira GC, Branche C, Haas B, Anupama A, Arner E, Aslund L, Attipoe P, Bontempi E, Bringaud F, Burton P, Cadag E, Campbell DA, Carrington M, Crabtree J, Darban H, da Silveira JF, de Jong P, Edwards K: The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science. 2005, 309: 409-415. 10.1126/science.1112631.
Article
PubMed
CAS
Google Scholar
Siniossoglou S: Lipins, lipids and nuclear envelope structure. Traffic. 2009, 10: 1181-1187. 10.1111/j.1600-0854.2009.00923.x.
Article
PubMed
CAS
Google Scholar
Finck BN, Gropler MC, Chen Z, Leone TC, Croce MA, Harris TE, Lawrence JC, Kelly DP: Lipin 1 is an inducible amplifier of the hepatic PGC-1alpha/PPARalpha regulatory pathway. Cell Metab. 2006, 4: 199-210. 10.1016/j.cmet.2006.08.005.
Article
PubMed
CAS
Google Scholar
Harris TE, Huffman TA, Chi A, Shabanowitz J, Hunt DF, Kumar A, Lawrence JC: Insulin controls subcellular localization and multisite phosphorylation of the phosphatidic acid phosphatase, lipin 1. J Biol Chem. 2007, 282: 277-286.
Article
PubMed
CAS
Google Scholar
Péterfy M, Phan J, Reue K: Alternatively spliced lipin isoforms exhibit distinct expression pattern, subcellular localization, and role in adipogenesis. J Biol Chem. 2005, 280: 32883-32889. 10.1074/jbc.M503885200.
Article
PubMed
Google Scholar
Péterfy M, Harris TE, Fujita N, Reue K: Insulin-stimulated interaction with 14-3-3 promotes cytoplasmic localization of lipin-1 in adipocytes. J Biol Chem. 2010, 285: 3857-3864. 10.1074/jbc.M109.072488.
Article
PubMed
PubMed Central
Google Scholar
Duan P, Xu Y, Birkaya B, Myers J, Pelletier M, Read LK, Guarnaccia C, Pongor S, Denman RB, Aletta JM: Generation of polyclonal antiserum for the detection of methylarginine proteins. J Immunol Methods. 2007, 320: 132-142. 10.1016/j.jim.2007.01.006.
Article
PubMed
CAS
PubMed Central
Google Scholar
Koonin EV, Tatusov RL: Computer analysis of bacterial haloacid dehalogenases defines a large superfamily of hydrolases with diverse specificity. Application of an iterative approach to database search. J Mol Biol. 1994, 244: 125-132. 10.1006/jmbi.1994.1711.
Article
PubMed
CAS
Google Scholar
Hisano T, Hata Y, Fujii T, Liu JQ, Kurihara T, Esaki N, Soda K: Crystal structure of L-2 haloacid dehalogenase from Pseudomonas sp. YL. J Biol Chem. 1996, 34: 20322-20330.
Article
Google Scholar
Huffman TA, Mothe-Satney I, Lawrence JC: Insulin-stimulated phosphorylation of lipin mediated by the mammalian target of rapamycin. Proc Natl Acad Sci USA. 2002, 99: 1047-1052. 10.1073/pnas.022634399.
Article
PubMed
CAS
PubMed Central
Google Scholar
O’Hara L, Han G-S, Peak-Chew S, Grimsey N, Carman GM, Siniossoglou S: Control of phospholipid synthesis by phosphorylation of the yeast lipin Pah1p/Smp2p Mg2+-dependent phosphatidate phosphatase. J Biol Chem. 2006, 281: 34537-34548. 10.1074/jbc.M606654200.
Article
PubMed
PubMed Central
Google Scholar
Santos-Rosa H, Leung J, Grimsey N, Peak-Chew S, Siniossoglou S: The yeast lipin Smp2 couples phospholipid biosynthesis to nuclear membrane growth. EMBO J. 2005, 24: 1931-1941. 10.1038/sj.emboj.7600672.
Article
PubMed
CAS
PubMed Central
Google Scholar
Nett IRE, Martin DMA, Miranda-Saavedra D, Lamont D, Barber JD, Mehlert A, Ferguson MAJ: The phosphoproteome of bloodstream form Trypanonosoma brucei, causative agent of African Sleeping Sickness. Mol Cell Proteomics. 2009, 8: 1527-1538. 10.1074/mcp.M800556-MCP200.
Article
PubMed
CAS
PubMed Central
Google Scholar
Cheng D, Côté J, Shaaban S, Bedford MT: The arginine methyltransferase CARM1 regulates the coupling of transcription and mRNA processing. Mol Cell. 2007, 25: 71-83. 10.1016/j.molcel.2006.11.019.
Article
PubMed
Google Scholar
Côté J, Richard S: Tudor domains bind symmetrical dimethylated arginines. J Biol Chem. 2005, 280: 28476-28483. 10.1074/jbc.M414328200.
Article
PubMed
Google Scholar
Kim S, Merrill BM, Rajpurohit R, Kumar A, Stone KL, Papov VV, Schneiders JM, Szer W, Wilson SH, Paik WK, Williams KR: Identification of N(G)-methylarginine residues in human heterogeneous RNP protein A1: Phe/Gly-Gly-Gly-Arg-Gly-Gly-Gly/Phe is a preferred recognition motif. Biochemistry. 1997, 36: 5185-5192. 10.1021/bi9625509.
Article
PubMed
CAS
Google Scholar
Liu Q, Dreyfuss G: In vivo and in vitro arginine methylation of RNA-binding proteins. Mol Cell Biol. 1995, 15: 2800-2808.
Article
PubMed
CAS
PubMed Central
Google Scholar
Najbauer J, Johnson BA, Young AL, Aswad DW: Peptides with sequences similar to glycine, arginine-rich motifs in proteins interacting with RNA are efficiently recognized by methyltransferase(s) modifying arginine in numerous proteins. J Biol Chem. 1993, 268: 10501-10509.
PubMed
CAS
Google Scholar
Vance JE, Vance DE: Phospholipid biosynthesis in mammalian cells. Biochem Cell Biol. 2004, 82: 113-128. 10.1139/o03-073.
Article
PubMed
CAS
Google Scholar
Kennedy EP, Weiss SB: The function of cytidine coenzymes in the biosynthesis of phospholipids. J Biol Chem. 1956, 222: 193-214.
PubMed
CAS
Google Scholar
Vance JE, Steenbergen R: Metabolism and functions of phosphatidylserine. Prog Lipid Res. 2005, 44: 207-234. 10.1016/j.plipres.2005.05.001.
Article
PubMed
CAS
Google Scholar
Smith TK, Bütikofer P: Lipid metabolism in Trypanosoma brucei. Mol Biochem Parasitol. 2010, 172: 66-79. 10.1016/j.molbiopara.2010.04.001.
Article
PubMed
CAS
PubMed Central
Google Scholar
Martin KL, Smith TK: Phosphatidylinositol synthesis is essential in bloodstream form Trypanosoma brucei. Biochem J. 2006, 396: 287-295. 10.1042/BJ20051825.
Article
PubMed
CAS
PubMed Central
Google Scholar
Signorell A, Rauch M, Jelk J, Ferguson MAJ, Bütikofer P: Phosphatidylethanolamine in Trypanosoma brucei is organized in two separate pools and is synthesized exclusively by the Kennedy Pathway. J Biol Chem. 2008, 283: 23636-23644. 10.1074/jbc.M803600200.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ferguson MAJ: The structure, biosynthesis and functions of glycosylphosphatidylinositol anchors, and the contributions of trypanosome research. J Cell Science. 1999, 112: 2799-2809.
PubMed
CAS
Google Scholar
Martin KL, Smith TK: The glycosylphosphatidylinositol (GPI) biosynthetic pathway of bloodstream form Trypanosoma brucei is dependent on the de novo synthesis of inositol. Mol Microbiol. 2006, 61: 89-105. 10.1111/j.1365-2958.2006.05216.x.
Article
PubMed
CAS
PubMed Central
Google Scholar
Menon AK, Eppinger M, Mayor S, Schwarz RT: Phosphatidylethanolamine is the donor of the terminal phosphoethanolamine group in trypanosome glycosylphosphatidylinositols. EMBO J. 1993, 12: 1907-1914.
PubMed
CAS
PubMed Central
Google Scholar
Gibellini F, Hunter WN, Smith TK: The ethanolamine branch of the Kennedy pathway is essential in the bloodstream form of Trypanosoma brucei. Mol Microbiol. 2009, 73: 826-843. 10.1111/j.1365-2958.2009.06764.x.
Article
PubMed
CAS
PubMed Central
Google Scholar
Brun R, Schonenberg M: Cultivation and in vitro cloning of procyclic culture forms of Trypanosoma brucei in a semi-defined medium. Acta Trop. 1979, 36: 289-292.
PubMed
CAS
Google Scholar
Gietz D, St-Jean A, Woods RA, Schiestl RH: Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 1992, 20: 1425-10.1093/nar/20.6.1425.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hayman ML, Miller MM, Chandler DM, Goulah CC, Read LK: The trypanosome homolog of human p32 interacts with RBP16 and stimulates its gRNA binding activity. Nucleic Acids Res. 2001, 29: 5216-5225. 10.1093/nar/29.24.5216.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zeiner GM, Sturm NR, Campbell DA: Exportin 1 mediates nuclear export of the kinetoplastid spliced leader RNA. Eukaryot Cell. 2003, 2: 222-230. 10.1128/EC.2.2.222-230.2003.
Article
PubMed
CAS
PubMed Central
Google Scholar
Chapman AB, Agabian N: Trypanosoma brucei RNA polymerase II is phosphorylated in the absence of carboxyl-terminal domain heptapeptide repeats. J Biol Chem. 1994, 269 (7): 4754-4760.
PubMed
CAS
Google Scholar