Ragusa F, Fallahi P, Elia G, Gonnella D, Paparo SR, Giusti C, Churilov LP, Ferrari SM, Antonelli A. Hashimoto’sthyroiditis: Epidemiology, pathogenesis, clinic and therapy. Best Pract Res Clin Endocrinol Metab. 2019;33: 101367.
Article
Google Scholar
Caturegli P, De Remigis A, Rose NR. Hashimoto thyroiditis: clinical and diagnostic criteria. Autoimmun Rev. 2014;13:391–7.
Article
CAS
Google Scholar
Fröhlich E, Richard W. Thyroid autoimmunity: role of anti-thyroid antibodies in thyroid and extra-thyroidal diseases. Front Immunol. 2017;8:521.
Article
Google Scholar
Liu S, An Y, Cao B, Sun R, Ke J, Zhao D. The composition of gut microbiota in patients bearing Hashimoto’s thyroiditis with euthyroidism and hypothyroidism. Int J Endocrinol. 2020;5036959.
Hasham A, Tomer Y. Genetic and epigenetic mechanisms in thyroid autoimmunity. Immunol Res. 2012;54:204–13.
Article
CAS
Google Scholar
Brix TH, Kyvik KO, Hegedüs L. A population-based study of chronic autoimmune hypothyroidism in Danish twins. J Clin Endocrinol Metab. 2000;85:536–9.
CAS
Google Scholar
Dittmar M, Libich C, Brenzel T, Kahaly GJ. Increased familial clustering of autoimmune thyroid diseases. Horm Metab Res. 2011;43:200–4.
Article
CAS
Google Scholar
Francesco L, Emilio F, Teresa R, Lucia A, Lucia M, Debora R, et al. Iodine contributes to thyroid autoimmunity in humans by unmasking a cryptic epitope on thyroglobulin. J Clin Endocrinol Metab. 2013;98:E1768–74.
Article
Google Scholar
Wang S, Wu Y, Zuo Z, Zhao Y, Wang K. The effect of vitamin D supplementation on thyroid autoantibody levels in the treatment of autoimmune thyroiditis: a systematic review and a meta-analysis. Endocrine. 2018;59:499–505.
Article
CAS
Google Scholar
Liontiris MI, Mazokopakis EE. A concise review of Hashimoto thyroiditis (HT) and the importance of iodine, selenium, vitamin D and gluten on the autoimmunity and dietary management of HT patients. Points that need more investigation. Hell J Nucl Med. 2017;20:51–6.
Google Scholar
Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science. 2005;307:1915–20.
Article
Google Scholar
Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Wang J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. nature. 2010;464:59–65.
Article
CAS
Google Scholar
Donaldson GP, Lee SM, Mazmanian SK. Gut biogeography of the bacterial microbiota. Nat Rev Microbiol. 2016;14:20–32.
Article
CAS
Google Scholar
Natividad JM, Verdu EF. Modulation of intestinal barrier by intestinal microbiota: pathological and therapeutic implications. Pharmacol Res. 2013;69:42–51.
Article
CAS
Google Scholar
Olsson LM, Poitou C, Tremaroli V, Coupaye M, Aron-Wisnewsky J, Bäckhed F, Caesar R. Gut microbiota of obese subjects with Prader-Willi syndrome is linked to metabolic health. Gut. 2020;69:1229–38.
Article
CAS
Google Scholar
Kugelberg E. Diet can protect against type 1 diabetes. Nat Rev Immunol. 2017;17:279–279.
Article
CAS
Google Scholar
Han H, Li Y, Fang J, Liu G, Yin J, Li T, Yin Y. Gut microbiota and type 1 diabetes. Int J Mol Sci. 2018;19:995.
Article
Google Scholar
Edwards CJ, Costenbader KH. Epigenetics and the microbiome: developing areas in the understanding of the aetiology of lupus. Lupus. 2014;23:505–6.
Article
CAS
Google Scholar
Maeda Y, Takeda K. Role of gut microbiota in rheumatoid arthritis. J Clin Med. 2017;6:59–63.
Article
Google Scholar
Köhling HL, Plummer SF, Marchesi JR, Davidge KS, Ludgate M. The microbiota and autoimmunity: Their role in thyroid autoimmune diseases. Clin Immunol. 2017;183:63–74.
Article
Google Scholar
Fröhlich E, Wahl R. Microbiota and thyroid interaction in health and disease. Trends Endocrinol Metab. 2019;30:479–90.
Article
Google Scholar
Knezevic J, Starchl C, Tmava Berisha A, Amrein K. Thyroid-gut-axis: how does the microbiota influence thyroid function? Nutrients. 2020;12:1769.
Article
CAS
Google Scholar
Cayres LCDF, de Salis LVV, Rodrigues GSP, Lengert AVH, Biondi APC, Sargentini LDB, de Oliveira GLV, et al. Detection of alterations in the gut microbiota and intestinal permeability in patients with Hashimoto thyroiditis. Front Immunol. 2021;12: 579140.
Article
Google Scholar
Levy M, Kolodziejczyk AA, Thaiss CA, Elinav E. Dysbiosis and the immune system. Nat Rev Immunol. 2017;17:219–32.
Article
CAS
Google Scholar
Kunc M, Gabrych A, Witkowski JM. Microbiome impact on metabolism and function of sex, thyroid, growth and parathyroid hormones. Acta Biochim Pol. 2016;63:189–201.
CAS
Google Scholar
Chen S, Zhou Y, Chen Y, et al. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34(17):i884–90.
Article
Google Scholar
Magoc Tanja, Salzberg Steven, et al. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27(21):2957–63.
Article
CAS
Google Scholar
Edgar Robert. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10(10):996–8.
Article
CAS
Google Scholar
Wang Q. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73(16):5261–7.
Article
CAS
Google Scholar
Douglas GM, Maffei VJ, Zaneveld JR, et al. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol. 2020;38:685–8.
Article
CAS
Google Scholar
Schloss PD, Westcott SL, Ryabin T, et al. Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Appl Environ Microbiol. 2009;75:7537.
Article
CAS
Google Scholar
Segata N, Izard J, Waldron L, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:R60.
Article
Google Scholar
Langille M, Zaneveld J, Caporaso J, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 2013;31:814–21.
Article
CAS
Google Scholar
Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000;28:27–30.
Article
CAS
Google Scholar
Kanehisa M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 2019;28:1947–51.
Article
CAS
Google Scholar
Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2021;49:D545–51.
Article
CAS
Google Scholar
Liang JQ, Li T, Nakatsu G, Chen YX, Yau TO, Chu E, Yu J. A novel faecal Lachnoclostridium marker for the non-invasive diagnosis of colorectal adenoma and cancer. Gut. 2020;69:1248–57.
Article
CAS
Google Scholar
Wu LY, Tang L, Zhang J, Lei YY, Hu SP, Chen YL, Yu XQ, Wang YB, Tang B, Yang GD. Characteristics of gut microbiota and their correlation with clinical parameters in patients with cholestatic liver disease. Journal of Third Military Medical University. 2020;42:2251–8.
Google Scholar
Cai YY, Huang FQ, Lao X, Lu Y, Gao X, Alolga RN, Yin K, Zhou X, Wang Y, Liu B, Shang J, Qi LW, Li J. Integrated metagenomics identifies a crucial role for trimethylamine-producing Lachnoclostridium in promoting atherosclerosis. NPJ biofilms and microbiomes. 2022;8:1–12.
Google Scholar
Zhao T, Zhan L, Zhou W, Chen W, Luo J, Zhang L, Weng Z, Zhao C, Liu S. The effects of Erchen decoction on gut microbiota and lipid metabolism disorders in zucker diabetic fatty rats. Front Pharmacol. 2021;12: 647529.
Article
CAS
Google Scholar
Lu H, You Y, Zhou X, He Q, Wang M, Chen L, Zhou L, Sun X, Liu Y, Jiang P, Dai J, Fu X, Kwan H, Zhao X, Lou L. Citrus reticulatae pericarpium extract decreases the susceptibility to HFD-induced glycolipid metabolism disorder in mice exposed to azithromycin in early life. Front Immunol. 2021;12:774433.
Hasani A, Ebrahimzadeh S, Hemmati F, Khabbaz A, Hasani A, Gholizadeh P. The role of Akkermansia muciniphila in obesity, diabetes and atherosclerosis. J Med Microbiol. 2021;70:001435.
Surana NK, Kasper DL. Moving beyond microbiome-wide associations to causal microbe identification. Nature. 2017;552:244–7.
Article
CAS
Google Scholar
Chen BD, Jia XM, Xu JY, Zhao LD, Ji JY, Wu BX, Ma Y, Li H, Zuo XX, Pan WY, Wang XH, Ye S, Tsokos GC, Zhang X. The gut microbiota of non-treated patients with SLE defines an autoimmunogenic and proinflammatory profile. Arthritis Rheumatol. 2020;73:232–43.
Kang Y, Cai Y, Yang Y. The gut microbiome and hepatocellular carcinoma: Implications for early diagnostic biomarkers and novel therapies. Liver Cancer. 2022;11:113–25.
Article
CAS
Google Scholar
Sorbara MT, Littmann ER, Fontana E, Moody TU, Kohout CE, Gjonbalaj M, Eaton V, Seok R, Leiner IM, Pamer EG. Functional and genomic variation between human-derived isolates of Lachnospiraceae reveals inter-and intra-species diversity. Cell Host Microbe. 2020;28:134–46.
Article
CAS
Google Scholar
Seki D, Mayer M, Hausmann B, Pjevac P, Giordano V, Goeral K, Unterasinger Lukas, Klebermaß-Schrehof K, De Paepe K, Wisgrill L, et al. Aberrant gut-microbiota-immune-brain axis development in premature neonates with brain damage. Cell host microbe. 2021;29:1558–72.
Article
CAS
Google Scholar
Sharon G, Cruz NJ, Kang DW, Gandal MJ, Wang B, Kim YM, Zink EM, Casey CP, Taylor BC, Mazmanian SK, et al. Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice. Cell. 2019;177:1600–18.
Article
CAS
Google Scholar
Heinken A, Khan MT, Paglia G, Rodionov DA, Harmsen HJ, Thiele I. Functional metabolic map of Faecalibacterium prausnitzii, a beneficial human gut microbe. J Bacteriol. 2014;196:3289–302.
Article
Google Scholar
Chen J, Qin Q, Yan S, Yang Y, Yan H, Li T, Wang L, Gao X, Li A, Ding S. Gut Microbiome Alterations in Patients With Carotid Atherosclerosis. Frontiers in Cardiovascular Medicine. 2021;8: 739093.
Article
CAS
Google Scholar