Hotel ACP, Cordoba A. Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Prevention. 2001;5(1):1–10.
Google Scholar
Zhou Z, Chen X, Sheng H, Shen X, Sun X, Yan Y, et al. Engineering probiotics as living diagnostics and therapeutics for improving human health. Microb Cell Factories. 2020;19(1):1–12.
Article
Google Scholar
Ayichew T, Belete A, Alebachew T, Tsehaye H, Berhanu H, Minwuyelet A. Bacterial probiotics their importances and limitations: a review. J Nutr Health Sci. 2017;4(2):202.
Google Scholar
Delgado S, Sánchez B, Margolles A, Ruas-Madiedo P, Ruiz L. Molecules produced by probiotics and intestinal microorganisms with immunomodulatory activity. Nutrients. 2020;12(2):391.
Article
CAS
Google Scholar
Aguilar-Toalá J, Garcia-Varela R, Garcia H, Mata-Haro V, González-Córdova A, Vallejo-Cordoba B, et al. Postbiotics: an evolving term within the functional foods field. Trends Food Sci Technol. 2018;75:105–14.
Article
Google Scholar
Nataraj BH, Ali SA, Behare PV, Yadav H. Postbiotics-parabiotics: the new horizons in microbial biotherapy and functional foods. Microb Cell Factories. 2020;19(1):1–22.
Article
Google Scholar
Saeidi N, Wong CK, Lo TM, Nguyen HX, Ling H, Leong SSJ, et al. Engineering microbes to sense and eradicate Pseudomonas aeruginosa, a human pathogen. Mol Syst Biol. 2011;7(1):521.
Article
Google Scholar
Liu M, Li S, Zhang Q, Xu Z, Wang J, Sun H. Oral engineered Bifidobacterium longum expressing rhMnSOD to suppress experimental colitis. Int Immunopharmacol. 2018;57:25–32.
Article
Google Scholar
Yan F, Polk DB. Lactobacillus rhamnosus GG: an updated strategy to use microbial products to promote health. Funct Food Rev (Print). 2012;4(2):77.
Google Scholar
Kalliomäki M, Salminen S, Arvilommi H, Kero P, Koskinen P, Isolauri E. Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial. Lancet. 2001;357(9262):1076–9.
Article
Google Scholar
Basu S, Chatterjee M, Ganguly S, Chandra PK. Effect of lactobacillus rhamnosus GG in persistent diarrhea in Indian children: a randomized controlled trial. J Clin Gastroenterol. 2007;41(8):756–60.
Article
Google Scholar
Horvath A, Dziechciarz P, Szajewska H. Meta-analysis: lactobacillus rhamnosus GG for abdominal pain-related functional gastrointestinal disorders in childhood. Aliment Pharmacol Ther. 2011;33(12):1302–10.
Article
CAS
Google Scholar
Claes IJ, Schoofs G, Regulski K, Courtin P, Chapot-Chartier M-P, Rolain T, et al. Genetic and biochemical characterization of the cell wall hydrolase activity of the major secreted protein of lactobacillus rhamnosus GG. PLoS One. 2012;7(2):e31588.
Article
CAS
Google Scholar
Bäuerl C, Pérez-Martínez G, Yan F, Polk DB, Monedero V. Functional analysis of the p40 and p75 proteins from lactobacillus casei BL23. Microb Physiol. 2010;19(4):231–41.
Article
Google Scholar
Yan F, Cao H, Cover TL, Washington MK, Shi Y, Liu L, et al. Colon-specific delivery of a probiotic-derived soluble protein ameliorates intestinal inflammation in mice through an EGFR-dependent mechanism. J Clin Invest. 2011;121(6):2242–53.
Article
CAS
Google Scholar
Yan F, Liu L, Dempsey PJ, Tsai Y-H, Raines EW, Wilson CL, et al. A lactobacillus rhamnosus GG-derived soluble protein, p40, stimulates ligand release from intestinal epithelial cells to transactivate epidermal growth factor receptor. J Biol Chem. 2013;288(42):30742–51.
Article
CAS
Google Scholar
Wang L, Cao H, Liu L, Wang B, Walker WA, Acra SA, et al. Activation of epidermal growth factor receptor mediates mucin production stimulated by p40, a lactobacillus rhamnosus GG-derived protein. J Biol Chem. 2014;289(29):20234–44.
Article
CAS
Google Scholar
Wang Y, Liu L, Moore DJ, Shen X, Peek R, Acra SA, et al. An LGG-derived protein promotes IgA production through upregulation of APRIL expression in intestinal epithelial cells. Mucosal Immunol. 2017;10(2):373–84.
Article
CAS
Google Scholar
Schallmey M, Singh A, Ward OP. Developments in the use of Bacillus species for industrial production. Can J Microbiol. 2004;50(1):1–17.
Article
CAS
Google Scholar
Cutting SM. Bacillus probiotics. Food Microbiol. 2011;28(2):214–20.
Article
Google Scholar
Guoyan Z, Yingfeng A, Zabed HM, Qi G, Yang M, Jiao Y, et al. Bacillus subtilis spore surface display technology: a review of its development and applications. 2019.
Google Scholar
Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev. 2000;64(3):548–72.
Article
CAS
Google Scholar
Kim J, Schumann W. Display of proteins on Bacillus subtilis endospores. Cell Mol Life Sci. 2009;66(19):3127–36.
Article
CAS
Google Scholar
Chen H, Chen Z, Ni Z, Tian R, Zhang T, Jia J, et al. Display of Thermotoga maritima MSB8 nitrilase on the spore surface of Bacillus subtilis using out coat protein CotG as the fusion partner. J Mol Catal B Enzym. 2016;123:73–80.
Article
CAS
Google Scholar
Wang H, Yang R, Hua X, Zhang W, Zhao W. An approach for lactulose production using the CotX-mediated spore-displayed β-galactosidase as a biocatalyst. J Microbiol Biotechnol. 2016;26(7):1267–77.
Article
CAS
Google Scholar
Dai X, Liu M, Pan K, Yang J. Surface display of OmpC of Salmonella serovar Pullorum on Bacillus subtilis spores. PLoS One. 2018;13(1):e0191627.
Article
Google Scholar
Sun H, Lin Z, Zhao L, Chen T, Shang M, Jiang H, et al. Bacillus subtilis spore with surface display of paramyosin from Clonorchis sinensis potentializes a promising oral vaccine candidate. Parasite Vectors. 2018;11(1):1–15.
Article
Google Scholar
Kang SJ, Jun JS, Moon JA, Hong KW. Surface display of p75, a lactobacillus rhamnosus GG derived protein, on Bacillus subtilis spores and its antibacterial activity against listeria monocytogenes. AMB Express. 2020;10(1):1–9.
Article
Google Scholar
Kang S-J, Kim M-J, Son D-Y, Kang S-S, Hong K-W. Effects of spore-displayed p75 protein from Lacticaseibacillus rhamnosus GG on the transcriptional response of HT-29 cells. Microorganisms. 2022;10(7):1276.
Article
CAS
Google Scholar
Sanders ME, Heimbach JT, Pot B, Tancredi DJ, Lenoir-Wijnkoop I, Lähteenmäki-Uutela A, Gueimonde M, Bañares S. Health claims substantiation for probiotic and prebiotic products. Gut Microbes. 2011;2(3):127−33.
Yan F, Polk DB. Characterization of a probiotic-derived soluble protein which reveals a mechanism of preventive and treatment effects of probiotics on intestinal inflammatory diseases. Gut Microbes. 2012;3(1):25–8.
Article
Google Scholar
Sanchez B, Urdaci MC, Margolles A. Extracellular proteins secreted by probiotic bacteria as mediators of effects that promote mucosa–bacteria interactions. Microbiology. 2010;156(11):3232–42.
Article
CAS
Google Scholar
Patel RM, Myers LS, Kurundkar AR, Maheshwari A, Nusrat A, Lin PW. Probiotic bacteria induce maturation of intestinal claudin 3 expression and barrier function. Am J Pathol. 2012;180(2):626–35.
Article
CAS
Google Scholar
Llewellyn A, Foey A. Probiotic modulation of innate cell pathogen sensing and signaling events. Nutrients. 2017;9(10):1156.
Article
Google Scholar
Hagen SJ, Ang L-H, Zheng Y, Karahan SN, Wu J, Wang YE, et al. Loss of tight junction protein claudin 18 promotes progressive neoplasia development in mouse stomach. Gastroenterology. 2018;155(6):1852–67.
Article
CAS
Google Scholar
Korhonen R, Kosonen O, Korpela R, Moilanen E. The expression of COX2 protein induced by lactobacillus rhamnosus GG, endotoxin and lipoteichoic acid in T84 epithelial cells. Lett Appl Microbiol. 2004;39(1):19–24.
Article
CAS
Google Scholar
Morteau O, Morham SG, Sellon R, Dieleman LA, Langenbach R, Smithies O, et al. Impaired mucosal defense to acute colonic injury in mice lacking cyclooxygenase-1 or cyclooxygenase-2. J Clin Invest. 2000;105(4):469–78.
Article
CAS
Google Scholar
Brauer R, Tureckova J, Kanchev I, Khoylou M, Skarda J, Prochazka J, et al. MMP-19 deficiency causes aggravation of colitis due to defects in innate immune cell function. Mucosal Immunol. 2016;9(4):974–85.
Article
CAS
Google Scholar
Riese DJ II, Cullum RL. Epiregulin: roles in normal physiology and cancer. Semin Cell Dev Biol. 2014;28: Elsevier:49–56.
Article
CAS
Google Scholar
Tang R, Yang G, Zhang S, Wu C, Chen M. Opposite effects of interferon regulatory factor 1 and osteopontin on the apoptosis of epithelial cells induced by TNF-α in inflammatory bowel disease. Inflamm Bowel Dis. 2014;20(11):1950–61.
Article
Google Scholar
Madison BB, McKenna LB, Dolson D, Epstein DJ, Kaestner KH. FoxF1 and FoxL1 link hedgehog signaling and the control of epithelial proliferation in the developing stomach and intestine. J Biol Chem. 2009;284(9):5936–44.
Article
CAS
Google Scholar
Coquenlorge S, Yin W-C, Yung T, Pan J, Zhang X, Mo R, et al. GLI2 modulated by SUFU and SPOP induces intestinal stem cell niche signals in development and tumorigenesis. Cell Rep. 2019;27(10):3006–18. e4.
Article
CAS
Google Scholar
Huang H, Cotton JL, Wang Y, Rajurkar M, Zhu LJ, Lewis BC, et al. Specific requirement of Gli transcription factors in hedgehog-mediated intestinal development. J Biol Chem. 2013;288(24):17589–96.
Article
CAS
Google Scholar
Miyoshi H, VanDussen KL, Malvin NP, Ryu SH, Wang Y, Sonnek NM, et al. Prostaglandin E2 promotes intestinal repair through an adaptive cellular response of the epithelium. EMBO J. 2017;36(1):5–24.
Article
CAS
Google Scholar
Corredor J, Yan F, Shen CC, Tong W, John SK, Wilson G, et al. Tumor necrosis factor regulates intestinal epithelial cell migration by receptor-dependent mechanisms. Am J Physiol Cell Physiol. 2003;284(4):C953–C61.
Article
CAS
Google Scholar
Feng H, Liu Y, Bian X, Zhou F, Liu Y. ALDH1A3 affects colon cancer in vitro proliferation and invasion depending on CXCR4 status. Br J Cancer. 2018;118(2):224–32.
Article
CAS
Google Scholar
Yamada S, Kanda Y. Retinoic acid promotes barrier functions in human iPSC-derived intestinal epithelial monolayers. J Pharmacol Sci. 2019;140(4):337–44.
Article
CAS
Google Scholar
Rhayat L, Maresca M, Nicoletti C, Perrier J, Brinch KS, Christian S, et al. Effect of Bacillus subtilis strains on intestinal barrier function and inflammatory response. Front Immunol. 2019;10:564.
Article
CAS
Google Scholar
Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983;166(4):557–80.
Article
CAS
Google Scholar
Anagnostopoulos C, Crawford I. Transformation studies on the linkage of markers in the tryptophan pathway in Bacillus subtilis. Proc Natl Acad Sci. 1961;47(3):378–90.
Article
CAS
Google Scholar
Kang SJ, Park EA, Lee DH, Hong KW. Comparison of the stability of eGFP displayed on the Bacillus subtilis spore surface using CotB and C-terminally truncated CotB proteins as an anchoring motif under extreme conditions. Appl BiolChem. 2019;62(1):1–8.
Google Scholar
Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. New york: Cold spring harbor laboratory press; 1989.
Juhas M, Ajioka JW. Integrative bacterial artificial chromosomes for DNA integration into the Bacillus subtilis chromosome. J Microbiol Methods. 2016;125:1–7.
Article
CAS
Google Scholar
Chen X, Zaro JL, Shen W-C. Fusion protein linkers: property, design and functionality. Adv Drug Del Rev. 2013;65(10):1357–69.
Article
CAS
Google Scholar
Nicholson WL, Setlow P. Dramatic increase in negative superhelicity of plasmid DNA in the forespore compartment of sporulating cells of Bacillus subtilis. J Bacteriol. 1990;172(1):7–14.
Article
CAS
Google Scholar
Atrih A, Bacher G, Gn A, Williamson MP, Foster SJ. Analysis of peptidoglycan structure from vegetative cells of Bacillus subtilis 168 and role of PBP 5 in peptidoglycan maturation. J Bacteriol. 1999;181(13):3956–66.
Article
CAS
Google Scholar
Moore S, Stein WH. Photometric Nin-hydrin method for use in the ehromatography of amino acids. J Biol Chem. 1948;176:367–88.
Article
CAS
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20.
Article
CAS
Google Scholar
Anders S, Huber W. Differential expression analysis for sequence count data. Nat Precedings. 2010;11(10).
Maere S, Heymans K, Kuiper M. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics. 2005;21(16):3448–9.
Article
CAS
Google Scholar
Von Mering C, Jensen LJ, Snel B, Hooper SD, Krupp M, Foglierini M, et al. STRING: known and predicted protein–protein associations, integrated and transferred across organisms. Nucleic Acids Res. 2005;33(suppl_1):D433–D7.
Google Scholar
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.
Article
CAS
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25(4):402–8.
Article
CAS
Google Scholar