Dawes IW, Perrone GG. Stress and ageing in yeast. FEMS Yeast Res. 2020;20:foz085.
Article
CAS
Google Scholar
El-Shetehy M, Wang C, Shine MB, Yu K, Kachroo A, Kachroo P. Nitric oxide and reactive oxygen species are required for systemic acquired resistance in plants. Plant Signal Behav. 2015;10:e998544.
Article
Google Scholar
Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 2010;48:909–30.
Article
CAS
Google Scholar
Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. Reactive oxygen gene network of plants. Trends Plant Sci. 2004;9:490–8.
Article
CAS
Google Scholar
Gill SS, Khan NA, Anjum NA, Tuteja N. Amelioration of cadmium stress in crop plants by nutrients management: morphological, physiological and biochemical aspects. Plant Stress. 2011;5:1–23.
De Maayer P, Anderson D, Cary C, Cowan DA. Some like it cold: understanding the survival strategies of psychrophiles. EMBO Rep. 2014;15:508–17.
Article
Google Scholar
Wang C, Chen Y, Zhou H, Li X, Tan Z. Adaptation mechanisms of Rhodococcus sp. CNS16 under different temperature gradients: physiological and transcriptome. Chemosphere. 2020;238:124571.
Article
CAS
Google Scholar
Long Y, Yan J, Song G, Li X, Li X, Li Q, et al. Transcriptional events co-regulated by hypoxia and cold stresses in zebrafish larvae. BMC Genomics. 2015;16:385.
Article
Google Scholar
He J, Yang Z, Hu B, Ji X, Wei Y, Lin L, et al. Correlation of polyunsaturated fatty acids with the cold adaptation of Rhodotorula glutinis. Yeast. 2015;32:683–90.
Article
CAS
Google Scholar
Cui J, He S, Ji X, Lin L, Wei Y, Zhang Q. Identification and characterization of a novel bifunctional Δ12/Δ15-fatty acid desaturase gene from Rhodosporidium kratochvilovae. Biotechnol Lett. 2016;38:1155–64.
Article
CAS
Google Scholar
Casanueva A, Tuffin M, Cary C, Cowan DA. Molecular adaptations to psychrophily: the impact of ‘omic’ technologies. Trends Microbiol. 2010;18:374–81.
Article
CAS
Google Scholar
Kot AM, Błażejak S, Kieliszek M, Gientka I, Bryś J, Reczek L, et al. Effect of exogenous stress factors on the biosynthesis of carotenoids and lipids by Rhodotorula yeast strains in media containing agro-industrial waste. World J Microbiol Biotechnol. 2019;35:157.
Article
Google Scholar
Maoka T. Carotenoids in marine animals. Mar Drugs. 2011;9:278–93.
Article
CAS
Google Scholar
Kelman D, Posner EK, McDermid KJ, Tabandera NK, Wright PR, Wright AD. Antioxidant activity of Hawaiian marine algae. Mar Drugs. 2012;10:403–16.
Article
CAS
Google Scholar
Mandelli F, Miranda VS, Rodrigues E, Mercadante AZ. Identification of carotenoids with high antioxidant capacity produced by extremophile microorganisms. World J Microbiol Biotechnol. 2012;28:1781–90.
Article
CAS
Google Scholar
Sakaki H, Nakanishi T, Tada A, Miki W, Komemushi S. Activation of torularhodin production by Rhodotorula glutinis using weak white light irradiation. J Biosci Bioeng. 2001;92:294–7.
Article
CAS
Google Scholar
Bhosale P, Gadre RV. Manipulation of temperature and illumination conditions for enhanced beta-carotene production by mutant 32 of Rhodotorula glutinis. Lett Appl Microbiol. 2002;34:349–53.
Article
CAS
Google Scholar
Bhosale P. Environmental and cultural stimulants in the production of carotenoids from microorganisms. Appl Microbiol Biotechnol. 2004;63:351–61.
Article
CAS
Google Scholar
Frengova GI, Beshkova DM. Carotenoids from Rhodotorula and Phaffia: yeasts of biotechnological importance. J Ind Microbiol Biotechnol. 2009;36:163–80.
Article
CAS
Google Scholar
Amaretti A, Raimondi S, Sala M, Roncaglia L, De Lucia M, Leonardi A, et al. Single cell oils of the cold-adapted oleaginous yeast Rhodotorula glacialis DBVPG 4785. Microb Cell Factories. 2010;9:73.
Article
Google Scholar
Zhang Z, Zhang X, Tan T. Lipid and carotenoid production by Rhodotorula glutinis under irradiation/high-temperature and dark/low-temperature cultivation. Bioresour Technol. 2014;157:149–53.
Article
CAS
Google Scholar
Sachindra NM, Sato E, Maeda H, Hosokawa M, Niwano Y, Kohno M, et al. Radical scavenging and singlet oxygen quenching activity of marine carotenoid fucoxanthin and its metabolites. J Agric Food Chem. 2007;55:8516–22.
Article
CAS
Google Scholar
Böhm F, Tinkler JH, Truscott TG. Carotenoids protect against cell membrane damage by the nitrogen dioxide radical. Nat Med. 1995;1:98–9.
Article
Google Scholar
Jagannadham MV, Chattopadhyay MK, Subbalakshmi C, Vairamani M, Narayanan K, Rao CM, et al. Carotenoids of an Antarctic psychrotolerant bacterium, Sphingobacterium antarcticus, and a mesophilic bacterium. Arch Microbiol. 2000;173:418–24.
Article
CAS
Google Scholar
Wang J, Chen W, Nian H, Ji X, Lin L, Wei Y, et al. Inhibition of polyunsaturated fatty acids synthesis decreases growth rate and membrane fluidity of Rhodosporidium kratochvilovae at low temperature. Lipids. 2017;52:729–35.
Article
CAS
Google Scholar
He J, Cui Z, Ji X, Luo Y, Wei Y, Zhang Q. Novel histidine kinase gene HisK2301 from Rhodosporidium kratochvilovae contributes to cold adaption by promoting biosynthesis of polyunsaturated fatty acids and glycerol. J Agric Food Chem. 2019;67:653–60.
Article
CAS
Google Scholar
Guo R, He M, Zhang X, Ji X, Wei Y, Zhang Q-L, et al. Genome-wide transcriptional changes of Rhodosporidium kratochvilovae at low temperature. Front Microbiol. 2021;12:727105.
Article
Google Scholar
Tani T, Ohshima Y. mRNA-type introns in U6 small nuclear RNA genes: implications for the catalysis in pre-mRNA splicing. Genes Dev. 1991;5:1022–31.
Article
CAS
Google Scholar
Jiao X, Zhang Y, Liu X, Zhang Q, Zhang S, Zhao ZK. Developing a CRISPR/Cas9 system for genome editing in the Basidiomycetous yeast Rhodosporidium toruloides. Biotechnol J. 2019;14:e1900036.
Article
Google Scholar
Sung D-Y, Kaplan F, Lee K-J, Guy CL. Acquired tolerance to temperature extremes. Trends Plant Sci. 2003;8:179–87.
Article
CAS
Google Scholar
Boardman L, Sørensen JG, Johnson SA, Terblanche JS. Interactions between controlled atmospheres and low temperature tolerance: a review of biochemical mechanisms. Front Physiol. 2011;2:92.
Article
Google Scholar
Mata-Gómez LC, Montañez JC, Méndez-Zavala A, Aguilar CN. Biotechnological production of carotenoids by yeasts: an overview. Microb Cell Factories. 2014;13:12.
Article
Google Scholar
Britton G, Hornero-Méndez D, Tomás-Barberán F. Phytochemistry of Fruit and Vegetables; 1997.
Google Scholar
Hayman EP, Yokoyama H, Chichester CO, Simpson KL. Carotenoid biosynthesis in Rhodotorula glutinis. J Bacteriol. 1974;120:1339–43.
Article
CAS
Google Scholar
Sierla M, Waszczak C, Vahisalu T, Kangasjärvi J. Reactive oxygen species in the regulation of stomatal movements. Plant Physiol. 2016;171:1569–80.
Article
CAS
Google Scholar
Li X, Cai J, Liu F, Dai T, Cao W, Jiang D. Exogenous Abscisic acid application during grain filling in winter wheat improves cold tolerance of Offspring’s seedlings. J Agro Crop Sci. 2014;200:467–78.
Article
CAS
Google Scholar
El-Agamey A, Lowe GM, McGarvey DJ, Mortensen A, Phillip DM, Truscott TG, et al. Carotenoid radical chemistry and antioxidant/pro-oxidant properties. Arch Biochem Biophys. 2004;430:37–48.
Article
CAS
Google Scholar
Rutz JK, Borges CD, Zambiazi RC, da Rosa CG, da Silva MM. Elaboration of microparticles of carotenoids from natural and synthetic sources for applications in food. Food Chem. 2016;202:324–33.
Article
CAS
Google Scholar
Jomova K, Valko M. Health protective effects of carotenoids and their interactions with other biological antioxidants. Eur J Med Chem. 2013;70:102–10.
Article
CAS
Google Scholar
Vershinin A. Biological functions of carotenoids--diversity and evolution. Biofactors. 1999;10:99–104.
Article
CAS
Google Scholar
Avalos J, Carmen LM. Biological roles of fungal carotenoids. Curr Genet. 2015;61:309–24.
Article
CAS
Google Scholar
Li C, Xu Y, Li Z, Cheng P, Yu G. Transcriptomic and metabolomic analysis reveals the potential mechanisms underlying the improvement of β-carotene and torulene production in Rhodosporidiobolus colostri under low temperature treatment. Food Res Int. 2022;156:111158.
Sperstad S, Lutnaes BF, Stormo SK, Liaaen-Jensen S, Landfald B. Torularhodin and torulene are the major contributors to the carotenoid pool of marine Rhodosporidium babjevae (Golubev). J Ind Microbiol Biotechnol. 2006;33:269–73.
Article
CAS
Google Scholar
Strzałka K, Gruszecki WI. Effect of beta-carotene on structural and dynamic properties of model phosphatidylcholine membranes. I. an EPR spin label study. Biochim Biophys Acta. 1994;1194:138–42.
Article
Google Scholar
Blasko A, Belagyi J, Dergez T, Deli J, Papp G, Papp T, et al. Effect of polar and non-polar carotenoids on Xanthophylomyces dendrorhous membranes by EPR. Eur Biophys J. 2008;37:1097–104.
Article
CAS
Google Scholar
Gaj T, Gersbach CA, Barbas CF. ZFN, TALEN and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31:397–405.
Article
CAS
Google Scholar
Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014;157:1262–78.
Article
CAS
Google Scholar
Schwartz C, Shabbir-Hussain M, Frogue K, Blenner M, Wheeldon I. Standardized Markerless gene integration for pathway engineering in Yarrowia lipolytica. ACS Synth Biol. 2017;6:402–9.
Article
CAS
Google Scholar
Verwaal R, Buiting-Wiessenhaan N, Dalhuijsen S, Roubos JA. CRISPR/Cpf1 enables fast and simple genome editing of Saccharomyces cerevisiae. Yeast. 2018;35:201–11.
Article
CAS
Google Scholar
Krappmann S. Gene targeting in filamentous fungi: the benefits of impaired repair. Fungal Bio Rev. 2007;21:25–9.
Article
Google Scholar
Das G, Henning D, Reddy R. Structure, organization, and transcription of Drosophila U6 small nuclear RNA genes. J Biol Chem. 1987;262:1187–93.
Article
CAS
Google Scholar
Schultz JC, Cao M, Zhao H. Development of a CRISPR/Cas9 system for high efficiency multiplexed gene deletion in Rhodosporidium toruloides. Biotechnol Bioeng. 2019;116:2103–9.
Article
CAS
Google Scholar
Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature. 2015;520:186–91.
Article
CAS
Google Scholar
Liu Y, Koh CMJ, Sun L, Hlaing MM, Du M, Peng N, et al. Characterization of glyceraldehyde-3-phosphate dehydrogenase gene RtGPD1 and development of genetic transformation method by dominant selection in oleaginous yeast Rhodosporidium toruloides. Appl Microbiol Biotechnol. 2013;97:719–29.
Article
CAS
Google Scholar